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SUMMARY

Most of the attacks and fraudulent activities on the Internet are carried out by malware.

In particular, botnets, as state-of-the-art malware, havebecome a primary “platform” for

attacks on the Internet. A botnet is a network of compromisedcomputers (i.e., bots) that

are under the control of an attacker (i.e., a botmaster) through some command and control

(C&C) channel. It typically contains tens to hundreds of thousands of bots, but some even

had several millions of bots. Botnets are now used for distributed denial-of-service (DDoS)

attacks, spam, phishing, information theft, distributingother malware, etc. With the mag-

nitude and the potency of attacks afforded by their combinedbandwidth and processing

power, botnets are now considered as thelargestthreat to Internet security.

Counteracting this emerging threat requires better detection techniques that identify

botnets (bots and/or their C&C servers) so that we can mitigate their damage and defend

against them. In this thesis, we focus on addressing the botnet detection problem in an

enterprise-like network environment. We present a correlation-based framework for bot-

net detection consisting of detection technologies already demonstrated in four systems:

BotHunter, BotSniffer, BotMiner, and BotProbe. Among these systems, BotHunter and

BotProbe focus on detecting theindividual behavior of bots, while BotSniffer and Bot-

Miner are targeted to detect thegroupbehavior of bots. A common thread of these systems

is correlation analysis, i.e., vertical (dialog) correlation, horizontal correlation, and cause-

effect correlation. BotHunter presentsvertical correlation, or dialog correlation, a new

kind of network perimeter monitoring strategy that examines the behavior of eachdistinct

internal host and focuses on recognizing the infection and coordinationdialog occurring

xiii



during a successful malware infection. BotSniffer and BotMiner present another comple-

mentary network perimeter monitoring strategy, i.e.,horizontal correlation, which focuses

on recognizing behavioral similarities and correlationsacross multiple hosts. BotSniffer

is designed mainly to capturecentralizedbotnet C&C channels using multiple rounds

of spatial-temporal correlation, while BotMiner providesa moregeneralframework for

protocol- and structure-independent botnet detection using clustering analysis of network

traffic; thus, BotMiner can be effective even when botnets change their C&C techniques

(e.g., protocols and structures). Finally, different fromthe abovepassivemonitoring strate-

gies, which usually require a relatively long time to observe several rounds/stages of botnet

communications/activities, BotProbe usesactive botnet probingtechniques in a middle-

box to achieve sufficient confidence of acause-effect correlationcaused by the command-

response pattern of botnet C&C, and only requires observingat most oneround of actual

C&C interaction. In short, we build a comprehensive correlation-based framework for

multi-perspective botnet detection, and implement different correlation techniques in dif-

ferent systems that complement each other.

All these Bot* systems have been evaluated in live networks and/or real-world net-

work traces. The evaluation results show that they can accurately detect real-world botnets

for their desired detection purposes with a very low false positive rate. These systems

are already starting to make an impact in the real world. For example, BotHunter is avail-

able to the public athttp://www.cyber-ta.org/BotHunter/, and in the first five

months after its public release, it amassed more than 6,000 downloads.

We find that correlation analysis techniques are of particular value for detecting ad-

vanced malware such as botnets. Dialog correlation can be effective as long as malware

infections need multiple stages. Horizontal correlation can be effective as long as malware

tends to be distributed and coordinated. In addition, active techniques can greatly comple-

ment passive approaches, if carefully used. We believe our experience and lessons are of

great benefit to future malware detection.

xiv



CHAPTER I

INTRODUCTION

During the last few decades, we have witnessed the explosiverise of the Internet and the

applications based on it to the point at which they have become an integral part of our

lives. While providing tremendous convenience, the growing reliance on the Internet also

presents a number of great security challenges. Internet security thereby has become more

and more important to those who use the Internet for work, business, entertainment, or

education.

Most of the attacks and fraudulent activities on the Internet are carried out by malicious

software, i.e., malware, which includes viruses, trojan, worms, spyware, and recently bot-

nets. Such malware has risen to become a primary source of most of the scanning [94],

distributed denial-of-service (DDoS) activities [71], direct attacks [11], and fraudulent ac-

tivities [25,63,84] taking place across the Internet. These Internet malware keeps evolving

in their forms, e.g., from worms to botnets. Among all the forms of malware, botnets, in

particular, have recently distinguished themselves as theprimary “platform” [63] on which

cyber criminals create global cooperative networks to support the ongoing growth of crim-

inal attacks and activities such as DDoS, spam, phishing, and information theft.

In this chapter, we first introduce the botnet problem and explain why it is a serious

security threat. We then outline the research challenges for botnet detection, which is es-

sential for further botnet mitigation and defense, and clarify the goals we want to achieve in

our solution. Next, we provide an overview of our solution: acorrelation-based framework

and the Bot* series of systems for botnet detection. Finally, we present the contributions of

the thesis and the organization of the remaining chapters.
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1.1 Botnets: Current Largest Security Threat

We begin with the definitions of “bot” and “botnet,” the key words of the thesis. A bot

is a software robot, or more precisely in the context of our research, a malware instance

that runs autonomously and automatically on a compromised machine without the user’s

consent. The bot code is usually professionally written by some (funded) criminal groups

and includes a rich set of supported functionalities [16] tocarry out many malicious attacks

and activities. Sometimes, we may also use the term “bot” to refer to the bot-infected

computer (or, “zombie” computer). A botnet (short for robotnetwork) is essentially a

network of bots that are under the control of an attacker (usually referred to as “botmaster”

or “botherder”). In the remainder of the thesis, we more formally define a botnet as “a

coordinated group of malware instances (bots) that are controlled by a botmaster via some

command and control (C&C) channel.”1 We may also refer to a botnet as “a bot army.”

Figure 1 illustrates a typical structure of a botnet.

bot

C&C
botmasterbot

bot

.

.

.

Figure 1: Botnet: a typical structure.

As a state-of-the-art malware form, a bot typically uses a combination of existing ad-

vanced malware techniques. For example, a bot can use keylogger techniques (to record a

user’s keyboard input such as password) and rootkit techniques (to hide its presence in the

system). In addition, like the previous generation of malware such as worms, a bot can self-

propagate on the Internet to increase the size of the bot army, e.g., infect remote vulnerable

1We will revisit this definition in Chapter 5.
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hosts through direct exploitation, or propagate through social engineering approaches such

as email and instant message. Recently, in one emerging trend, botmasters use compro-

mised Web servers to infect those who visit the websites through drive-by download [81].

By using multiple propagation vectors, the botmaster can recruit many victims. Currently,

a botnet typically contains tens to hundreds of thousands ofbots, but some had several

millions of bots [61].

All bots distinguish themselves from the previous malware forms by their ability to

establish a command and control (C&C) channel through whichthey can be updated and

directed by a botmaster. Once collectively under the control of a botmaster, bots form a

botnet. To control the bot army, a botmaster can use several controlmechanisms in terms

of protocols and structures. The Internet Relay Chat (IRC) protocol is the earliest, and

still the most widely used C&C channel at present. HTTP is also used because Web traffic

is generally allowed in most networks. Although centralized control was very successful

in the past, botmasters are also exploring distributed control in order to avoid the single

point of failure problem. For example, they can use a peer-to-peer structure to organize

and control a bot army [44, 52, 64, 106, 112]. We will discuss other related background on

botnet C&C mechanisms when we present our detection systemsin later chapters.

Within the last decade, many infamous botnets have attracted considerable media cov-

erage. Table 1 lists several examples of such well-known botnets and briefly describes their

features.

Table 1: Selective well-known botnets in history.
Date Name C&C Protocol Structure Distinguishing Description
04/1998 GTbot IRC Centralized First widely spreading IRC bot using mIRC executables and scripts
04/2002 SDbot IRC Centralized First stand-alone and open-source IRC bot
10/2002 Agobot IRC Centralized Very robust, flexible, and modular design
04/2003 Spybot IRC Centralized Extensive feature set based on Agobot
2004 Rbot/rxbot IRC Centralized SDbot descendant, code base wildly distributed
03/2004 Phatbot WASTE P2P Experimental P2P bot using WASTE protocol
05/2004 Bobax HTTP Centralized First well-known spambot using HTTP as C&C
04/2006 Nugache Self-defined P2P First “practical” P2P bot connecting to predefined peers
01/2007 Storm Kademlia P2P Famous large-scale P2P botnet mainly used to send spam
04/2008 Kraken Self-defined Centralized Large botnet penetrating into at least 50 of the Fortune 500 companies

Unlike previous malware such as worms, which are probablyfun-driven, botnets are

3



targeted for real financial gain, i.e., they are trulyprofit-driven. Recently, Vint Cerf, “the

father of the Internet,” likened the botnet scourge to a pandemic and speculated that up to

a quarter of all computers on the Internet may be participating in botnet-related activities

[116]. The magnitude of bot armies and the potency of attacksafforded by their combined

bandwidth and processing power have led to a recognition of botnets as thelargestthreat

to Internet security [63]. Currently, botnets are the root cause of many Internet attacks and

illicit activities [12,25,84], listed as follows.

• DDoS attacks. A bot army can be commanded to launch a targeted, distributed

denial-of-service attack against any single Internet system/service (e.g., a website)

in an attempt to consume the resources (e.g., bandwidth) of the system so that it can-

not properly serve its intended users. Nowadays,all DDoS attacks are launched from

botnet platforms. Although simple in principle and technique, a DDoS attack is very

effective because of the magnitude and the accumulated bandwidth of the botnet,

and it is very hard to prevent and defend against. As a recent well-known example,

such a DDoS attack was launched against the Estonian government and commercial

websites in May 2007 [33].

• Spam production. More than 95% of email on the Internet is spam [114], accounting

for several billion spam messages in Internet traffic daily and frustrating, confusing,

and annoying e-mail users.Mostof these spam messages are actually sent from bot-

nets. Although the detailed percentage of spam sent from botnets may vary according

to different statistics (e.g., 80% in 2004 [65]), many people believe it accounts for

more than 95% now. A number of well-known botnets have been used mainly for

sending spam, including Bobax [96], an early spambot using HTTP as its C&C, and

Storm worm (a.k.a. Peacomm) [44, 52], another infamous P2P botnet aggressively

conducting spam activities.
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• Click fraud. A botmaster can easily profit by driving the bot army to click on on-

line ads (i.e., issue HTTP requests for advertiser web pages) for the purpose of per-

sonal or commercial gain. For example, as reported by GoogleClick Quality and

Security Teams [32],Clickbot.A is a botnet that controls 100,000 machines to

execute a low-noise click fraud attack through syndicated search ads. According to

ClickForensics (http://www.clickforensics.com), click fraud accounted

for 27.8% of all pay-per-click advertisements in the first quarter (Q1) of 2008. Bot-

nets are boosting click fraud, e.g., click fraud traffic generated from botnets in Q1

2008 was 8% higher than that in Q4 2007.

• Information theft. Bots are actively used to steal sensitive information such as iden-

tities, credit card numbers, passwords, or product keys on auser’s local machine.

By using keyloggers and screen capture, a bot can also easilysteal the password of

an online banking account. This is becoming a very serious problem. For exam-

ple, in 2005, the FBI estimated that botnets caused 20 million dollars in losses and

theft [20], “including one scheme that bilked a Midwest financial institution out of

millions.”

• Phishing. Botnets are widely used to host malicious phishing sites. Criminals typi-

cally send out spam messages (e.g., using botnets) to trick users to visit fake phishing

sites (usually financial related), so that they can obtain users’ sensitive information

such as usernames, passwords, and credit card numbers on thereal financial websites.

The independent research and advisory firm Financial Insights [3] estimated that in

2004, global financial institutions experienced more than $400 million in fraud losses

from phishing. U.S. businesses lose an estimated $2 billiona year as their clients be-

come phishing victims.

• Distributing other unwanted software, e.g., adware/spyware. Botnets are naturally

a good platform on which a botmaster can distribute many other forms of malware.
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According to a recent report [105], a discovered botnet “illegally installed adware

on hundreds of thousands of computers in the U.S., includingsome belonging to the

military.”

Botnets can launch several other forms of attacks or illicitactivities. A detailed analysis

of these and the impact of malware, particularly botnets, onthe Internet economy can be

found in a recent report [7] from OECD (Organization for Economic Co-operation and

Development) and APEC (Asia Pacific Economic Co-operation).

1.2 Botnet Detection: Research Challenges and Our Goals

To counter botnet attacks, the current largest security threat, we first need to detect the

existence of botnets (bots and/or their C&C servers) withina monitored network in order

to effectively mitigate and defend against them. Botnet detection has become a daunting

task because botnets, as state-of-the-art malware, present considerable challenges:

• Bots are stealthy on infected machines. Since they are used for long-term purpose

to make profits, unlike some previous malware such as virusesand worms, bots usu-

ally do not aggressively consume CPU/memory/bandwidth resources nor perform

noticeable damage to computers in order to avoid the awareness of the user. They

can disable existing anti-virus tools and use rootkit techniques to protect them from

being detected at a local host. Thus, a host-based solution may not be very effective.

In this thesis, we thereby focus primarily on a network-based solution.

• Bot infection is usually a multi-faceted and multi-phased process, incorporating sev-

eral computing assets, multiple bidirectional network flows, and different infection

stages. Thus, looking at only one specific aspect (or, event,stage), as many existing

solutions do, may be not effective; it may lead to more false positives and false neg-

atives. In contrast, looking at multiple aspects is more robust and likely to reveal the

big picture of a bot infection.
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• Bots are dynamically evolving. For example, they can frequently update their bina-

ries as directed, more quickly than a user updates his anti-virus signature base. Thus,

static and signature-based approaches may not be effective.

• Botnets can have a very flexible design of C&C channels. They can use different

protocols such as IRC or HTTP. They can encrypt the content (e.g., commands) in

a C&C communication. They can even use a different structures to organize and

control the bot army, e.g., using P2P techniques. Thus, a solution very specific to a

certain botnet C&Cinstanceis not desirable.

Because of these challenges, existing techniques such as traditional anti-virus tools

cannot sufficiently handle the botnet detection problem. InChapter 2, we provide a detailed

overview of various related work (e.g., intrusion/malwaredetection, honeypot-based botnet

tracking, and existing botnet detection approaches) and further explain why these existing

solutions are not adequate for botnet detection.

In this thesis, we propose our network-based solution for botnet detection. When de-

signing the solution, we have the following four goals in mind:

1. Our solution should be guided by sound principles that capture the fundamental in-

variants of botnet behavior rather than symptoms (e.g., scanning).

2. Our solution should provide complementary techniques and cover multiple stages,

dimensions, and perspectives.

3. Our solution should be general and extensible. By general, we mean the solution

should not be restricted to a specific botnet instance or dependent on a specific symp-

tom. By extensible, we mean the solution should provide an open and flexible frame-

work that can easily incorporate new user-provided components/plug-ins.

4. Our solution should provide practical prototype systemsthat can work in real-world

networks. By practical, we mean that the detection systems can accurately detect
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real-world botnets for their desired detection purposes and have a low false positive

rate in real-world normal traffic as well as reasonable resource usage.

1.3 Solution Overview

We propose acorrelation-based framework for effective network-based botnet detection in

an enterprise-like network environment such as a university campus network, a regular en-

terprise network, or simply a local area network (LAN). Within this framework, we present

three different correlation techniques: vertical (dialog) correlation, horizontal correlation,

and cause-effect correlation. Based on these techniques, we build four anomaly/behavior-

based detection systems: BotHunter [46], BotSniffer [48],BotMiner [45], and BotProbe.

These four systems can be deployed at the network edge routerto monitor through traffic;

they will issue alerts when detecting some internal hosts/groups (indicated by IP addresses)

as suspicious bots/botnets.

Enterprise-like
Network

Internet

Router

time

Passive Monitoring Active Monitoring

Vertical
Correlation

(BotHunter)

Horizontal
Correlation

(BotSniffer,
BotMiner)

Cause-Effect
Correlation

(BotProbe)

Figure 2: Our correlation-based botnet detection framework.

Figure 2 illustrates our correlation-based botnet detection framework and four detec-

tion systems. Among these systems, BotHunter uses verticalcorrelation, and BotSniffer
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and BotMiner use horizontal correlation. While these threesystems use apassivemonitor-

ing strategy, BotProbe uses anactivemonitoring strategy and the cause-effect correlation

technique. These Bot* systems have two different detectionfocuses: BotHunter and Bot-

Probe are used to detect theindividualbehavior of bots, while BotSniffer and BotMiner are

used to detect thegroupbehavior of a botnet.

BotHunter [46] presents vertical correlation, a new kind ofnetwork perimeter moni-

toring strategy that examines the behavior history of each distinct host. It recognizes a

correlated dialog trail (or, evidence trail) consisting ofmultiple stages and representing a

successful bot infection. Therefore, this strategy is alsoreferred to as “dialog correlation.”

BotHunter is designed to track two-way communication flows between internal assets and

external entities, and recognize an evidence trail of data exchanges that match a state-based

infection sequence model. BotHunter consists of a correlation engine driven by several

malware-focused network detection sensors, each charged with detecting specific stages

and aspects of the malware infection process, including inbound scanning, exploit usage,

egg downloading, outbound bot coordination dialog, and outbound attack/propagation. The

BotHunter correlator then links the dialog trail of inboundintrusion alarms with those out-

bound communication patterns that are highly indicative ofa successful local host infec-

tion. When a sequence of evidence matches BotHunter’s infection dialog model, a consol-

idated report is produced to capture all the relevant eventsand event sources that played a

role during the infection process. More details of BotHunter are discussed in Chapter 3.

BotHunter has some limitations. It is restricted to thepredefinedinfection life cy-

cle model, and at some stages such as C&C communication, it currently provides only

signature-based sensors. Thus, to complement BotHunter, we propose another two sys-

tems, BotSniffer [48] and BotMiner [45], which do not necessarily require the observation

of multiple different stages on an individual host, nor require botnet-specific signatures.

Unlike BotHunter’s vertical correlation, BotSniffer and BotMiner present another com-

plementary novel network monitoring strategy, “horizontal correlation,” which examines
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the correlation and similarityacrossmultiple hosts. This horizontal correlation technique

is inspired by the observation that, because of the pre-programmed activities related to

C&C under the control of a botmaster, bots within the same botnet will likely demon-

strate spatial-temporal correlation and similarity. For example, they engage in coordi-

nated/similar communication, propagation, and attack andfraudulent activities. However,

normal independent hosts (even the previous generation of isolated malware instances) are

unlikely to demonstrate such correlated malicious activities. By using horizontal correla-

tion and anomaly detection techniques, both systems do not requirea priori knowledge

of botnets such as captured bot binaries and hence the botnetsignatures, and C&C server

names/addresses.

BotSniffer [48], designed to detect mainly centralized C&Cchannels, monitorsmultiple

rounds of spatial-temporal correlation and similarity of message/activity responses from a

group of hosts that share some common centralized server connection (e.g., IRC or HTTP).

Using statistical algorithms, it can achieve theoretical bounds on the false positive and false

negative rates within a reasonable detection time (quickerthan BotMiner). More details of

BotSniffer are discussed in Chapter 4.

An important limitation of BotSniffer is that it is restricted to the detection of botnets

mainly usingcentralizedC&C channels. BotMiner [45] presents a moregeneraldetec-

tion framework that is independent of botnet C&C protocol and structure. We start from

the definition and essential properties of botnets. As defined before, a botnet is acoordi-

nated groupof malwareinstances that arecontrolledby a botmaster via some C&C chan-

nel. The essential properties of a botnet are that the bots communicate with some C&C

servers/peers, perform malicious activities, and do so in asimilar or correlated way. Ac-

cordingly, BotMiner clusters similar communication traffic and similar malicious traffic,

and performs cross cluster correlation to identify the hosts that share both similar commu-

nication patternsandsimilar malicious activity patterns. Therefore, these hosts are consid-

ered bots in the monitored network. More details of BotMinerare discussed in Chapter 5.
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While BotHunter, BotSniffer, and BotMiner use apassivemonitoring strategy, which

usually requires a relatively long time to observe multiplestages/rounds of botnet commu-

nications/activities, BotProbe uses anactivemonitor strategy to shorten the detection time.

It can actively participate in a network session (e.g., a suspicious IRC chatting session), if

necessary, by injecting some well-crafted packets to the client within the monitored net-

work. We call this technique “active botnet probing.” Our motivation is that, for a large

portion of botnet C&C channels (e.g., those using chatting-like protocols such as IRC,

which is currently used bymostof the existing botnets), a C&C interaction has a determin-

istic command-response pattern. By using active botnet probing in a middlebox, we can

gain enough confidence of thecause-effect correlationcaused by this command-response

pattern. Although controversial and clearly limited, BotProbe demonstrates effectiveness

on real-word IRC-based botnet detection, and requires observing at most oneround of

C&C interaction. This is very useful in a real-world situation in which IRC botnets are still

the majority and their C&C interaction is usually infrequent. More details of BotProbe are

discussed in Chapter 6.

Our correlation-based framework and Bot* systems meet our four design goals. We

provide a brief explanation here and leave the details for the remaining chapters:

First, each correlation analysis captures some perspective of the invariants of botnet

behavior, i.e., infection dialog (dialog correlation) andcommand-response pattern (cause-

effect correlation) within the individual host, and correlated behavior within the group (hor-

izontal correlation). We believe that the idea of correlation analysis can potentially capture

the behavior invariants of future malware.

Second, most correlation techniques by themselves involvemultiple detection sensors

covering different stages/aspects. For example, BotHunter employs several sensors cov-

ering multiple different infection stages. In addition, different correlation techniques and

detection systems complement each other quite well. For instance, some focus onindivid-

ual bot detection, while some focus on the detection of thenetworkof bots. Furthermore,
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each system may have its own limitations and coverage. However, when combined, they

can complement each other to enlarge the detection coveragefrom multiple different per-

spectives. We show the architecture of combining our multiple techniques in a future botnet

detection system in Chapter 7.

Third, our framework and systems are general and extensible. In design, they target

a certainclassof botnets. In other words, they are not restricted to a very specific bot-

net instance. Even BotProbe, although it appears to target an IRC botnet,is applicable

to a general class of botnets that have deterministic, interactive C&C (e.g., chatting-like

communication such as IRC or instant message). In addition,these systems are open and

extensible. That is, they are amenable to the adding of new detection sensors. We provide

a concrete example in Chapter 3.

Finally, our systems are practical and can work in the real world. This will be discussed

in detail throughout the remainder of the thesis.

1.4 Thesis Contribution and Organization

In this thesis, we make the following main contributions:

1. We propose a correlation-based framework for multi-perspective botnet detection.

In this framework, we introduce several new and complementary network monitor-

ing and correlation analysis techniques, i.e., vertical (dialog) correlation, horizontal

correlation, and cause-effect correlation. Each of these correlation techniques pro-

vides a relatively sound principle that captures some fundamental behavior invariant

of botnets to guide our anomaly-based detection schemes. While vertical correla-

tion captures the dialog nature in the multi-stage bot infection life cycle, horizontal

correlation captures the coordination and similarity nature within the same botnet.

The cause-effect correlation captures the non-human driven, deterministic command-

response pattern of a certain class of botnet C&C channels. We believe the general

principles behind these correlation analysis techniques could also be applicable to
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detecting future advanced malware.

2. We provide four practical botnet detection prototype systems (i.e., BotHunter, Bot-

Sniffer, BotMiner, and BotProbe) that use our correlation techniques. These sys-

tems are evaluated on real-world network traffic and shown toaccurately detect

botnets with a low false positive rate. Our work is starting to make an impact in

the real world. For example, BotHunter, available to the public at http://www.

cyber-ta.org/BotHunter/, has amassed more than 6,000 downloads in the

first five months since its public release.

The remainder of this thesis is organized as follows. Chapter 2 introduces related work

and explains why the existing work cannot adequately solve the botnet detection problem.

In particular, we present a taxonomy of botnet detection techniques and show the difference

and coverage of existing detection approaches. Chapter 3 presents the motivation of dia-

log correlation and the detailed design, implementation, and evaluation of the BotHunter

system. Chapter 4 presents the motivation of using spatial-temporal correlation, and the

design, implementation, and evaluation of the BotSniffer system, as well as a discussion

on the limitations and further improvement. Chapter 5 introduces the BotMiner system,

explains its unique feature of protocol- and structure-independence, presents the design,

implementation and evaluation of BotMiner, and then discusses its limitations. Chapter 6

presents BotProbe system, including the motivation, design, implementation and evalua-

tion. Chapter 7 summarizes the lessons learned from the Bot*systems and presents an

architecture that combines multiple discussed techniquesin a future botnet detection sys-

tem. Finally, Chapter 8 concludes the thesis and describes directions for future work.
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CHAPTER II

RELATED WORK

In the previous chapter, we identified the research challenges for botnet detection. In this

chapter, we will answer the following questions: Why are existing techniques not sufficient

for botnet detection? How are they related to or different from our solution? In particular,

to compare existing solutions, we propose a taxonomy of botnet detection techniques and

clarify the coverage of different approaches.

2.1 Intrusion and Malware Detection

Existing intrusion and malware detection techniques can generally be categorized into host-

based or network-based solutions. Host-based detection techniques are very important to

recognize malware binaries (e.g., viruses) and host-levelanomaly behavior (e.g., a certain

system call invoked, a certain registry key created). Amongthese techniques, anti-virus

tools are useful for traditional virus detection for a long time [99]. Another typical ex-

ample of host-based intrusion detection techniques is system call-based monitoring [39].

However, when facing the botnet issue, these purely host-based detection techniques have

several problems. First, traditional anti-virus tools arebased on signatures and essentially

requiring a comprehensive, precise, and frequently updated signature base. However, bot-

nets can easily evade signature-based detection by updating themselves more frequently

than users update their signature base. Second, host-baseddetection systems are at the

same privilege level as bots on the same host. Thus, bots can disable anti-virus tools in

the system and/or use rootkit techniques to protect themselves from detection at the lo-

cal host. Actually, as state-of-the-art malware, numerousbots have already used all these

tricks. Indeed, the detection rate of bots is relatively lowcompared to that of traditional

malware. For example, Kraken was reported to be undetected by 80% of the commercial
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anti-virus tools on the market [62]. In 2007, a study from PandaLabs [4] found that even

with correctly installed up-to-date protection (e.g., anti-virus tools), a significant portion

of PCs (22.97%) still became infected by malware. Considering the fact that millions or

even 1/4 of Internet PCs are related to botnet activities [116], the actual percentage could

be higher. Finally, behavior-based host level realtime monitoring usually contributes to

significant system performance overhead, so these solutions become even less attractive to

normal users.

Therefore, in the scope of this research, we care more about network-based detection

solutions and consider host-based techniques orthogonal to our network-based approaches.

In the remainder of this chapter, we limit our focus to the most relevant work, mainly

network-based studies.

Network-based intrusion detection research has proposed many techniques and sys-

tems. Snort [86] and Bro [74] are two representative misuse (or, signature) based intrusion

detection systems (IDSs). They rely on a large signature base (which precisely describes

what attacks look like) to recognize intrusion attempts in network traffic. The fundamen-

tal weakness of these signature-based IDSs, similar to traditional anti-virus tools, is that

they cannot detect new attacks because they have never been seen before, and thus have

no signatures. Anomaly-based IDSs can solve this limitation by describing whatnormal

traffic looks like, and any significant deviation from the normal is considered ananomaly.

Two examples of such IDSs are PAYL [110, 111] and Anagram [109], which examine the

payload of an inbound packet, perform n-gram analysis, and then detect exploits (e.g.,

shellcode) in the payload. The main weakness of such an anomaly-based solution is that it

may cause more false positives.

Prior to the prevalence of botnets, worms were the typical malware form. A worm

is essentially a self-propagating malware instance that can replicate itself through network

infection (or sometimes through social engineering trickssuch as email or instant message).

The main difference between worms and botnets is that worms do not have a command
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and control (C&C) channel. Thus, botnets are fundamentallymore flexible than worms.

Another difference could be their motivation. Whereas worms are more likely fun-driven,

launched by attackers who want to have fun or show off in the “blackhat” community,

botnets are more profit-driven, launched by attackers for profit.

There is numerous work on worm detection. Since worms generally use scanning,

which provides a quick and automatic way to propagate [93], almost all of the worm detec-

tion approaches focus on the detection of scanning traffic/behavior. Moore [70] proposed

the use of distributed “network telescopes” for early warning, i.e., using a reasonably large

fraction of dark address space to observe security events such as worm scanning traffic

occurring on the Internet. Provos [80] and Dagon et al. [30] proposed to use honeypot

techniques to gather and identify worm attacks. Zou et al. [127] proposed a Kalman filter-

based detection algorithm, an approach that detects the trend of illegitimate scans to a large

unused IP space. Wu et al. [120] proposed a victim counter-based detection algorithm

that tracks the increasing rate of newly infected outside victims. Jung et al. [57, 58] and

Weaver et al. [115] proposed worm detection approaches based on the observation that

scanning worms usually cause a high failed connection ratio. Gu et al. [47] proposed the

Destination-Source Correlation (DSC) algorithm for worm detection by using an anomaly

detection technique that considers both the infection propagation nature and the scanning

activity of worms.

While some of the above existing intrusion and malware detection techniques can be

helpful in recognizing some anomaly aspect of botnets, theyare not by themselves well-

suited for botnet detection for the following reasons:

• Most detection systems focus on examining mainly (or only)inboundnetwork traf-

fic for signs of malicious point-to-point intrusion attempts. They have the capacity

to detect initial incoming intrusion attempts, and the prolific frequency with which

they produce such alarms in operational networks is well documented [91]. However,
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distinguishing asuccessfullocal host infection from the daily myriad scans and intru-

sion attempts is as critical and challenging a task as any facet of network defense. In

addition, because of recent advances in malware, particularly the botnet, it is harder

to accurately detect when it initially penetrates the monitored network, as machines

can be infected by botnets using many ways other than traditional remote exploita-

tion. For example, an internal user may click on a malicious email attachment and

get infected, or a user may visit a website and get infected via drive-by downloads,

which is now occurring quite frequently [81]. Moreover, an already infected laptop

may be carried in and connected to the monitored network. Such examples have

compelled us to develop a detection capability for already compromised machines

inside monitored networks regardless of how they have been infected. Therefore, we

must monitor both inbound and outbound network traffic instead of just incoming

traffic.

• A botnet is very flexible, and its infection life cycle can consist of several different

stages and aspects. However, existing approaches examine only some certain symp-

toms such as scanning, so they are less likely to detect botnets. They can cause false

positives if a non-bot machine (probably a normal host or other forms of malware)

has scanning-like activities. They can also cause false negatives if a bot does not scan,

or although still does scan, it evades the specific scan detection technique. Therefore,

we still need new techniques that are more suitable for botnet detection and ideally,

that follow the four design goals we have proposed.

Finally, we agree that traditional intrusion and malware intrusion detection techniques

are still useful for recognizing certain aspects of botnets. As we show later in our detailed

solution in the following chapters, some of these existing techniques can be the building

blocks for a new system that combines them with our detectiontechniques following a

systematic correlation strategy.

17



2.2 Alert Correlation and IDS Cooperation

A significant amount of related work has investigated alert correlation and IDS cooperation

techniques that combine multiple alerts, events, or aspects of network intrusion detection.

These techniques enable an analyst to obtain higher-level interpretations of network detec-

tor alert streams, thereby alleviating noise-level issueswith traditional network IDS.

The main purpose of alert correlation is for log reduction, multi-step attack detection,

and attack intention recognition. In particular, the techniques used to recognize multi-

stage attacks share some similarities with our vertical (dialog) correlation technique used

in BotHunter. We address their differences as follows.

One approach to capture complex and multi-step attacks is toexplicitly specify the

stages, relationships, and ordering among the various constituents of an attack. As an il-

lustration, USTAT [54] and NetSTAT [104], two IDSs based on state transition analysis

techniques, specify computer attacks as sequences of actions that cause transitions in the

security state of a system. In addition, Valeur et al. [103] performed multi-step attack

correlation according to attack scenarios specifieda priori using STATL [36], a language

for expressing attacks as states and transitions. Other such systems are JIGSAW [100], a

system that uses notions of concepts and capabilities for modeling complex attacks, and a

system proposed by Ning et al. [73], which provides a formal framework for alert correla-

tion, and CAML [22], a language framework for defining and detecting multi-step attack

scenarios. Unlike BotHunter, all of these techniques are based onstrict causal relation-

ships, e.g., pre-conditions and post-conditions, or astrict temporal sequenceof attacks.

One of their obvious limitations is that the dependencies and sequences need to be manu-

ally specifieda priori for all attacks, yet such dependencies/sequences are oftenunknown

or very loose. Moreover, a missing event in the dependences/sequences will fail the entire

correlation. With regard to botnet detection, although botinfections do regularly follow

a series of general stages, we find it rare to accurately detect all steps, and find it equally

difficult to predict the order and time-window in which theseevents are recorded. Thus, the
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above alert correlation techniques are not suitable for botnet detection. In contrast, BotH-

unter does not have a strict restriction in causal dependences or temporal sequences, and

can tolerate missing events during the infection flow.

Another IDS, GrIDS [95], aggregates network activity into causal graphs that can be

used for analyzing causal structures and identifying policy violations. Ellis et al. [37] and

Jiang et al. [56] describe behavioral-based systems for detecting network worms based on

tracking propagation graph. In contrast to the above systems based on a global causal graph

or a propagation graph, BotHunter focuses on the problem of bot detection and uses local

infection dialog correlation as a means to define the probable set of events that indicate a

bot infection.

Sommer et al. [91] described contextual Bro signatures as a means for producing ex-

pressive signatures and weeding out false positives. Thesesignatures can capture two di-

alogs and precisely define multi-step attacks. BotHunter differs due to the requirement that

several flows be simultaneously monitored across many participants (e.g., infection source,

bot victim, C&C, propagation targets) and that the evidence-trail-based approach loosely

specifies bot infections.

Alert correlation modules such as CRIM [26] provide the ability to cluster and correlate

similar alerts. The system can extract higher-level correlation rules automatically for the

purpose of intention recognition. Alert fusion techniquescan greatly reduce log size by

clustering similar events under a single label [102]. The similarity is usually based upon

either attributing multiple events to a single threat agentor providing a consolidated view

of a common set of events that target a single victim. Valdes and Skinner [102] proposed

a two-step probabilistic alert correlation based on attackthreads and alert fusion. We con-

sider this line of work to be complementary to BotHunter, i.e., these fusion techniques

could be integrated into our detection systems as a preprocessing step in a multi-sensor

environment.

The main purpose of IDS cooperation is to collect information from multiple sources/IDSs
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in order to detect distributed and coordinated attacks suchas worm propagation. Such tech-

niques share some similarities with our horizontal correlation techniques used in BotSniffer

and BotMiner. We address their differences as follows.

Several work, including EMERALD (Event Monitoring Enabling Responses to Anoma-

lous Live Disturbances) [78], AAFID (Autonomous Agents ForIntrusion Detection) [15],

DIDS (Distributed Intrusion Detection System) [90], and CARDS (Coordinated Attack Re-

sponse & Detection System) [123], proposed distributed architectures that combine multi-

ple monitors/detectors/agents for intrusion detection and response capability. These tech-

niques provide a distributed, architectural-level solution for tracking distributed and coordi-

nated attacks across multiple machines. In another relatedwork, Abad et al. [9] proposed to

correlate data among different sources/logs (e.g., syslog, firewall, netflow) to improve final

intrusion detection accuracy. All these techniques are different from BotSniffer/BotMiner

in that they merely provide an abstract, high-level, architectural solution as a general hy-

brid IDS instead of providing concrete detection algorithms and techniques for concrete

attacks such as botnets. However, these architectural solutions could be complementary to

our work.

Xie et al. proposed Seurat [122], which can detect aggregated anomalous events such

as worm propagation by correlating host file system changes across space and time. Malan

[67] proposed to use collaborative groups of machines to exchange summaries of recently

executed system calls, in order to detect commonly propagated malware (e.g., worm) within

the network. These two approaches are similar to our horizontal correlation used in Bot-

Sniffer/BotMiner. However, fundamentally different fromBotSniffer/BotMiner, they re-

quire deploying a host-based sensor to monitor system file changes or system call sequences

on everymachine in the network. First of all, these host-based monitors can cause signif-

icant performance overhead on a local machine. Second, suchwide-scale installation on

every machine is costly and generally not very realistic. Third, as discussed before, these

host-based monitors can be disabled or fooled by advanced bots. BotSniffer and BotMiner,
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however, using a network-based solution, avoid the above weaknesses. Although similar

in concept, the detailed correlation and detection algorithms also differ. Finally, we note

that because their features (file system change and system call sequence) are different from

those of BotSniffer/BotMiner, Seurat [122] and the techniques from Malan [67] can po-

tentially complement our solution.

2.3 Botnet Measurement and Honeypot-based Tracking

Much of the research on botnets has focused on gaining a basicunderstanding of the na-

ture and full potential of the botnet threat, e.g., on the measurement study, collection, and

tracking issues.

Measurement studies can help us understand the botnet threat. Cooke et al. [25] con-

ducted several basic studies of botnet dynamics. Dagon et al. [31] proposed using the DNS

sinkholing technique for botnet study and pointed out the global diurnal behavior of bot-

nets. Barford and Yegneswaran [16] examined the bot source code to provide an inside look

at the botnets. For example, they analyzed the structural similarities, defense mechanisms,

and command and control capabilities, of major bot families. Collins et al. [24] presented

their observations of the relationship between botnets andscanning/spamming activities.

For effective botnet collection and tracking, researcherscommonly use honeypot tech-

niques. Freiling et al. [40], using honeypots to track botnets, provided an early report for

understanding the phenomenon of botnets. Nepenthes [13] isa low-interaction honeypot

that simulates several vulnerabilities and automates the collection of malware binaries. Ra-

jab et al. [82] conducted a multi-faceted approach to collect bots and track botnets, and

provided an in-depth study of current botnet activities. Byusing honeypot techniques to

collect and track botnets, researchers can analyze bot binary and behavior, and then extract

signatures for content-based detection or C&C server information for response (e.g., DNS

sinkhole [31]).

Although honeypots are effective tools for collecting and tracking botnets, they have
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several limitations. First, low-interaction honeypots such as Nepenthes [13] can capture

attacks from only a limited number of known exploits that they faithfully emulate, and

high-interaction honeypots can neither implement all services nor deal with the problem

of scaling. Second, honeypots are mainly designed to capture malware that propagates

via scanning for remote vulnerabilities, so they cannot easily capture malware using other

propagation methods such as email and Web drive-by download,1 which are probably two

of the most widely used propagation vectors [6, 81]. Third, there is no guarantee on the

frequency or volume of malware captured using this approachbecause a honeypot can only

wait and hope for the malware to contact it. Fourth, malware may avoid scanning the

networks with “known” honeypots [17], and it can detect virtual machine environments

commonly used for honeypots [41,50,128] and alter its behavior to evade analysis. Finally,

honeypots report infections on only their decoy machines; they generally cannot directly

tell which non-decoy machines in the enterprise network aremembers of a botnet. These

weaknesses limit the capability of honeypots as effectivedetectionsystems.

2.4 Existing Work on Botnet Detection

Botnet detection is a relatively new area. Recently, several papers have proposed various

approaches for detecting botnets.

Binkley and Singh [18] proposed combining both IRC statistics and TCP work weight

(i.e., anomaly scanning activity) for detecting IRC-basedbotnets. Their approach is useful

only for detecting certain botnet instances, i.e., IRC botsthat perform scanning.

Ramachandran et al. [85] proposed using DNSBL (DNS blacklist) counter-intelligence

to locate botnet members that generate spam. The basic assumption of this approach is that

botmasters may use DNSBL to query the status of their bots, and a machine that queries

many others but that is rarely queried by others is suspicious. This heuristic may be useful

in some cases, but not generally valid and can cause many false positives. As a result, this

1Recent advance of client-side honeypot techniques like HoneyMonkey [113] and web-based honey-
pots [89] could partially relieve this limitation.
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approach is restricted to limited instances of spam botnets.

Rishi [43] is a signature-based IRC botnet detection systemthat matches known nick-

name patterns of IRC bots. Similar to a typical signature-based anti-virus tool or IDS,

this approach is accurate only if a comprehensive and precise signature base is available,

but possesses the inherent weaknesses of signature-based solutions such as its inability to

detect bots without using known nickname patterns.

Livadas et al. [66,98] proposed a machine learning based approach for botnet detection

using some general network-level traffic features (e.g., bytes per second) of chatting-like

protocols such as IRC. Karasaridis et al. [59] studied network flow level detection of IRC

botnet controllers for backbone networks. The above two approaches are similar to our

BotMiner’s work in C-plane clustering but different in manyways. First, they are used

to detectIRC-basedbotnets (by matching a known IRC traffic profile, e.g., low volume,

chatting-like, or having a PING-PONG pattern), while BotMiner does not have the as-

sumption of using known C&C traffic profiles. Second, they candetect botnets using only

a centralized structure, while BotMiner can detect any C&C structures such as P2P. Third,

BotMiner uses a different traffic feature set based on a new communication flow (C-flow)

data format instead of traditional network flows. Finally, BotMiner uses full knowledge in

both C-plane and A-plane information instead of only (or mainly) C-plane network flow

records.

Stinson and Mitchell proposed BotSwat [97], a host-based taint tracking system to iden-

tify programs that use received network data (from an untrustworthy external source) in

some system call argument without intended local user inputor explicit permission (e.g.,

whitelist), an attempt to identify thepotentialremote control behavior of bots. This ap-

proach may cause non-negligible false positives (because many legitimate programs may

also use a portion of network traffic in some of their system call arguments) and a perfor-

mance penalty (taint propagation analysis is very heavy, soit is generally used only for the

purpose of analysis instead of detection).
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Yen and Reiter proposed TAMD [124], a system that detectspotentialmalware (in-

cluding botnets) by aggregating traffic that shares the sameexternal destination, similar

payload, and that involves internal hosts with similar operating systems. The concept of

traffic aggregation is similar to the horizontal correlation strategy used in BotSniffer and

BotMiner. TAMD’s aggregation method based on destination networks focuses on net-

works that experience an increase in traffic as compared to a historical baseline. In addi-

tion, this aggregation method is limited to aggregate bots using a centralized C&C structure

(i.e., bots that share a common destination server), so it will likely fail on P2P-based bot-

nets. Different from BotSniffer and BotMiner, which focus on botnet detection, TAMD

aims to detect a broader range of potentially suspicious hosts as long as they share the

same external destination, similar payloads, and similar OS platforms; hence TAMD could

cause a higher false positive rate than BotSniffer/BotMiner. Since the aggregation features

of TAMD differ from those of BotSniffer/BotMiner, they can complement one another in

botnet and malware detection.

2.5 A Taxonomy of Botnet Detection Techniques

In this thesis, we propose four new botnet detection systems: BotHunter [46], BotSnif-

fer [48], BotMiner [45], and BotProbe. We leave the details of the techniques of each

system for the following chapters. Here, to provide the reader with quick and system-

atic knowledge of the features, relationships, and differences among all existing detection

techniques including ours, we present a taxonomy of botnet detection methods from seven

dimensions.

Our first dimension is whether the solution is based on host ornetwork. We have already

discussed the advantages and disadvantages of each solution. Among botnet detection

systems/techniques we have introduced, BotSwat [97] is theonly host-based solution; the

others, including our Bot* systems, are network-based techniques.

Our second dimension is whether the solution is based on signature or behavior/anomaly.
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For this dimension, Rishi [43] is the only signature-based solution; the others, including our

Bot* systems, are behavior/anomaly-based techniques. Theadvantages and disadvantages

of both solutions have already been discussed before. We note here, although mainly us-

ing behavior/anomaly-based techniques, our Bot* systems have been carefully designed

by combining various techniques covering different aspects within each system andacross

different systems to complement each other. Therefore, we can achieve a very low false

positive rate, as shown in the following chapters.

Our third dimension is whether the solution is passive or active. All the above tech-

niques/systems are passive, i.e., they passively monitor the network traffic or system behav-

ior, except BotProbe, which uses anactivemonitoring strategy and which may participate

in a botnet communication by inserting or modifying some traffic, if necessary. Compared

with an active strategy, the advantage of a passive one is clear: it is safe because it does

not interfere existing communication/activity. However,many such passive solutions may

require monitoring a relatively longer time to observe multiple stages/rounds/instances of

botnet communications/activities in order for accurate detection. An active approach such

as BotProbe can compensate for this limitation. For example, BotProbe only requires ob-

servingat most oneround of C&C interaction. By performing active botnet probing several

times, BotProbe can gain enough confidence of acause-effect correlationcaused by the

command-response pattern of botnet C&C. Nevertheless, an active approach such as Bot-

Probe is still controversial and clearly limited. Thus, ourframework includes both passive

and active approaches that complement each other.

The fourth dimension we consider is the detection phase. Theinfection life cycle of

a bot has roughly two phases:2 preparation and operation. In the preparation phase, an

innocent host becomes a bot by a remote infection or by the mistaken execution of some

malicious executable (e.g., in an email attachment), and prepares to be controlled through

C&C. A host starts its preparation phase when it is initiallyattacked, and completes this

2Note, later in Chapter 3, we further split the infection lifecycle into more detailed stages.
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Figure 3: Simplified bot infection life cycle.

phase when the full functional bot binary is executed. When this bot attempts to connect

to a C&C channel, it begins its operation phase, when it can bedirected by a botmaster

to perform any activities. Thus, we can classify a botnet detection technique according

to which phase alerts can be issued, during the preparation phase or during the operation

phase. All introduced botnet detection systems/techniques, except BotHunter, work only in

the operation phase. BotHunter can issue alerts either in the preparation phase (detecting

early bots during penetration time) or in the operation phase (detecting bots when they are

already there regardless of how they penetrated into the network).

The fifth dimension we consider is the detection target, or, whether the target is an

individual bot or anetwork/groupof bots. Livadas et al. [66, 98], Karasaridis et al. [59],

TAMD, BotSniffer, and BotMiner focus on the detection of groups of bots, while others

focus on detecting individual bots. These two kinds of solutions are fundamentally com-

plementary. While the group-based approach requires observing more bots (e.g., at least

two) for detection, it could discover an anomaly that may notbe noticeable at an individual

host level. Our framework includes both individual-based (BotHunter and BotProbe) and

group-based (BotSniffer and BotMiner) approaches.

Our sixth dimension relates to the detection assumptions, that is, whether a solution

requires other out-of-band information (e.g., DNSBL) or not. Among introduced solutions,

some (Ramachandran et al. [85]) requires information from other sources such as DNSBL,

and some (Karasaridis et al. [59]) requires bootstrapping the clustering analysis from alert
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information (e.g., scanning activity) provided by other systems. Except for these two, other

techniques/systems require no out-of-band information. They are relatively independent

and capable of working directly on network traffic or a host system.

Our final dimension is whether a solution is restricted to or dependent on some certain

C&C technique (e.g., protocol and structure). Many existing approaches work for only a

certain C&C protocol or structure. Rishi [43] and the approach by Binkley and Singh [18]

are designed for only IRC-based botnets. Likewise, approaches by Livadas et al. [66, 98]

and Karasaridis et al. [59] are shown to detect IRC botnets intheir papers. Their techniques

could be used to detect other chatting-like C&C. However, they are still restricted to a cen-

tralized structures, and both require knowledge of the C&C traffic profile. TAMD [124]

is not restricted to C&C protocols, however, its aggregation by destination is restricted to

centralized C&C structures only. Similarly, our BotSniffer focuses on centralized botnet

C&C detection. BotSwat [97], the solution by Ramachandran et al. [85], BotHunter and

BotMiner are independent of the botnet C&C techniques. However, BotSwat [97] is a host-

based solution, and the solution by Ramachandran et al. [85]is fundamentally limited to

the detection of specific spambots. In addition, BotHunter is dependent on the infection

model. Only BotMiner is a fundamentally general network-based botnet detection frame-

work independent of botnet C&C protocols or structures.

In the following chapters, we will introduce the details of our Bot* systems one by one

and then provide a comprehensive summary of the four systems.
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CHAPTER III

BOTHUNTER: DIALOG CORRELATION-BASED BOTNET

DETECTION

We have introduced the botnet problem, and explained why previous work cannot suffi-

ciently counter this current largest security threat. In this chapter, we introduce our dialog

(vertical) correlation-based detection system, BotHunter.

New Approach: We introduce an “evidence-trail” approach to recognizing success-

ful bot infections through the communication sequences that occur during the infection

process. We refer to this approach as the infectiondialog correlationstrategy. In dialog

correlation, bot infections are modeled as a set of loosely ordered communication flows ex-

changed between an internal host and one or more external entities. Specifically, we model

all bots as sharing a common set of underlying actions that occur during the infection life

cycle: target scanning, infection exploit, binary egg download and execution, command

and control channel establishment, and outbound attack/propagation. We assume neither

that all these eventsare requiredby all bots nor that every eventwill be detectedby our

sensor suite. Instead, our dialog correlation system collects an evidence trail of relevant

infection events per internal host, looking for a thresholdcombination of sequences that

will satisfy our requirements for bot declaration.

New System: To demonstrate our methodology, we introduce a passive network mon-

itoring system calledBotHunter, which embodies our infection dialog correlation strat-

egy. The BotHunter correlator is driven by Snort [86] with a customized malware-focused

ruleset, which we further augment with two additional bot-specific anomaly-detection plug-

ins for malware analysis: SLADE (Statistical payLoad Anomaly Detection Engine) and

SCADE (Statistical sCan Anomaly Detection Engine). SLADE implements a lossy n-gram
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payload analysis of incoming traffic, targeting byte-distribution divergences in selected pro-

tocols that are indicative of common malware intrusions. SCADE performs several parallel

and complementary malware-focused port scan analyses to both incoming and outgoing

network traffic. The BotHunter correlator associates inbound scan and intrusion alarms

with outbound communication patterns that are highly indicative of successful local host

infections. When a sufficient sequence of alerts is found to match BotHunter’s infection

dialog model, a consolidated report is produced to capture all the relevant events and event

participants that contributed to the infection dialog.

Contributions:

• We introduce a new network perimeter monitoring strategy that focuses on detecting

malware infections (specifically bots/botnets) through IDS-driven dialog correlation.

We present an abstraction of the major network dialog sequences that occur during a

successful bot infection, which we call ourbot infection dialog model.

• Based on this model, we introduce BotHunter, which includesthree bot-specific sen-

sors and our IDS-independent dialog correlation engine. BotHunter is thefirst real-

time analysis system that can automatically derive a profileof the entire bot detection

process, including the identification of the victim, the infection agent, the source of

the egg download, and the command and control center. Although our current sys-

tem implements a classic bot infection dialog model, one candefine new models in

an XML configuration file and add new detection sensors. Our correlator is IDS-

independent, flexible, and extensible to process new modelswithout modification.

• We also present our evaluation of BotHunter against more than 7,000 recent bot

infection experiences that we compiled by deploying BotHunter both within a high-

interaction honeynet and through a VMware experimentationplatform using recently

captured bots. We validate our infection sequence model by demonstrating how our

correlation engine successfully maps the network traces ofa wide variety of recent
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bot infections into our model.

Chapter Organization: In Section 3.1, we present our understanding and modeling

of the bot infection dialog. In Section 3.2, we detail the design and implementation of

BotHunter. In Section 3.3, we describe the evaluation results of BotHunter in several real-

world networks. In Section 3.4, we discuss several practical considerations and potential

solutions. We introduce the Internet distribution of BotHunter system in Section 3.5 and

summarize the chapter in Section 3.6.

3.1 Bot Infection Dialog Model

3.1.1 Understanding Bot Infection Sequences

Understanding the full complexity of the bot infection lifecycle is an important challenge

for future network perimeter defenses. From the vantage point of the network egress po-

sition, distinguishing successful bot infections from thecontinual stream of background

exploit attempts requires an analysis of the two-way dialogflow that occurs between the

internal hosts of a network and the Internet. On a well-administered network, the threat

of a direct-connect exploit is limited by the extent to whichgateway filtering is enabled.

However, contemporary malware families are highly versatile in their ability to attack sus-

ceptible hosts through email attachments, infected P2P media, and drive-by download in-

fections. Furthermore, with the ubiquity of mobile laptopsand virtual private networks

(VPNs), direct infection of an internal asset need not necessarily occur across an adminis-

tered perimeter router. Regardless of how malware enters a host, once established inside

the network perimeter, the challenge remains to identify the infected machine and remove

it as quickly as possible.

For this study, we focus on a relatively narrow aspect of bot behavior. Our objective

is to understand the sequence of network communications anddata exchanges that occur

between a victim host and other network entities. To illustrate the stages of a bot infection,

we outline an infection trace from one example bot, a variantof the Phatbot (aka Gaobot)
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family [1]. Figure 4 presents a summary of communication exchanges that were observed

during a local host Phatbot infection.

TCP connections: 2745/Beagle; 135,1025/DCOM1,2; 139,445/NetBIOS;
3127/MyDoom; 6129/Dameware; 5000/UPNP

DCERPC Exploit (port 135)

Egg download

Open backdoor (port 17509)

IRC connection (port 6668)

Outbound scanning:
TCP 2745,135,1025,139,445,3127,6129,5000

…

Attacker

Victim

C&C server

2

3

4

5

1

Figure 4: Phatbot infection dialog summary.

As with many common bots that propagate through remote exploit injection, Phatbot

first (step 1) probes an address range in search of exploitable network services or responses

from Trojan backdoors that may be used to enter and hijack theinfected machine. If Phat-

bot receives a connection reply to one of the targeted ports on a host, it then launches an

exploit or logs in to the host using a backdoor. In our experimental case, a Windows work-

station replies to a 135-TCP (MS DCE/RPC) connection request, establishing a connection

that leads to an immediate RPC buffer overflow (step 2). Once infected, the victim host is

directed by an upload shell script to open a communication channel back to the attacker to

download the full Phatbot binary (step 3). The bot inserts itself into the system boot pro-

cess, turns off security software, probes the local networkfor additional NetBIOS shares,

and secures the host from other malware that may be loaded on the machine. The infected

victim next distinguishes itself as a bot by establishing a connection to a botnet C&C server,

which in the case of Phatbot is established over an IRC channel (step 4). Finally, the newly

infected bot establishes a listen port to accept new binary updates and begins scanning other
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external victims on behalf of the botnet (step 5).

3.1.2 Modeling the Infection Dialog Process

While Figure 4 presents an example of a specific bot, the events enumerated are highly

representative of the life cycle phases that we encounter across the various bot families

that we have analyzed. Our bot propagation model is primarily driven by an assessment of

outbound communication flows that are indicative of behavior associated with botnet coor-

dination. Whenever possible, we seek to associate such outbound communication patterns

with observed inbound intrusion activity. However, this latter activity is not a requirement

for bot declaration. Neither are incoming scan and exploit alarms sufficient to declare a suc-

cessful malware infection, as we assume that a constant stream of scan and exploit signals

will be observed from the egress monitor.

We model an infection sequence as a composition of participants and a loosely ordered

sequence of exchanges: InfectionI =< A, V, E, C, V ′, D >, whereA = Attacker,V =

Victim, E = Egg Download Location,C = C&C Server, andV ′ = the Victim’s next prop-

agation target.D represents an infection dialog sequence composed of bidirectional flows

that cross the egress boundary. Our infection dialogD is composed of a set of five potential

dialog transactions (E1, E2, E3, E4, E5),1 some subset of which may be observed during

an instance of a local host infection:

− E1: External to Internal Inbound Scan

− E2: External to Internal Inbound Exploit

− E3: Internal to External Binary Acquisition

− E4: Internal to External C&C Communication

− E5: Internal to External Outbound Attack/Propagation

1Note, here we have extended the two-phase (preparation and operation) infection proposed in Chapter 2
and Figure 3 into five steps. Here, the preparation phase consists of E1, E2 and E3, and the operation phase
consists of the rest two steps, E4 and E5.
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Figure 5: Bot infection dialog model.

Figure 5 illustrates our bot infection dialog model used forassessing bidirectional flows

across the network boundary. Our dialog model is similar to the model presented by Rajab

et al. in their analysis of 192 IRC bot instances [82]. However, the two models differ in

ways that arise because of our specific perspective of egressboundary monitoring. For

example, we incorporate early initial scanning, which is often a preceding observation

that occurs usually in the form of IP sweeps that target a relatively small set of selected

vulnerable ports. We also exclude DNS C&C lookups, which Rajab et al. [82] include as a

consistent precursor to C&C coordination, because DNS lookups are often locally handled

or made through a designated DNS server via internal packet exchanges that should not

be assumed visible from the egress position. Further, we exclude local host modifications

because these are also events that are not assumed to be visible from the egress point.

Finally, we include internal-to-external attack/propagation, which Rajab et al. [82] exclude.

While our model is currently targeted for passive network monitoring events, it will be

straightforward to include host-based or DNS-based IDSs that can augment our dialog

model.

Figure 5 is not intended to provide a strict ordering of events, but rather to capture a

typical infection dialog (exceptions to which we discuss below). In the idealized sequence
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of a direct-exploit bot infection dialog, the bot infectionbegins with an external-to-internal

communication flow that may encompass bot scanning (E1) or a direct inbound exploit

(E2). When an internal host has been successfully compromised (we observe that many

compromise attempts regularly end with process dumps or system freezes), the newly com-

promised host downloads and instantiates a full malicious binary instance of the bot (E3).

Once the full binary instance of the bot is retrieved and executed, our model accommo-

dates two potential dialog paths, which Rajab et al. [82] refer to as the bot Type I versus

Type II split. Under Type II bots, the infected host proceedsto C&C server coordination

(E4) before attempting attack/propagation. Under a Type I bot, the infected host immedi-

ately moves to outbound scanning and attack propagation (E5), representing a classic worm

infection.2

We assume that bot dialog sequence analysis must be robust tothe absence of some

dialog events, must allow for multiple contributing candidates for each of the various dia-

log stages, and must not require strict sequencing on the order in which outbound dialog is

conducted. Furthermore, in practice, we have observed thatfor Type II infections, time de-

lays between the initial infection events (E1 and E2) and subsequent outbound dialog events

(E3, E4, and E5) can be significant—sometimes on the order of several hours. Furthermore,

our model must be robust to failed E1 and E2 detections, possibly due to insufficient IDS

fidelity or due to malware infections that occur through avenues other than direct remote

exploit.

One approach to address the challenges of sequence order andevent omission is to use a

weighted event threshold system that captures the minimum necessary and sufficient sparse

sequences of events under which bot profile declarations canbe triggered. For example,

one can define a weighting and threshold scheme for the appearance of each event such

that a minimum set of event combinations is required before bot detection. In our case, we

2It is important for BotHunter to capture and report any real worm infection; thus, even though a Type I
bot may very well be just a classic worm, it is still included in the model.
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assert that bot infection declaration requires a minimum of:

Condition 1: Evidence of a local host infection (E2), AND evidence of outward bot

coordination or attack/propagation (E3-E5); or

Condition 2: At least two distinct signs of outward bot coordination or attack/propagation

(E3-E5).

In our description of the BotHunter correlation engine in Section 3.2.2, we discuss a

weighted event threshold scheme that enforces the above minimum requirement for bot

declaration.

3.2 BotHunter: System Design and Implementation

We now turn our attention to the design of a passive monitoring system capable of recog-

nizing the bidirectional warning signs of local host infections, and correlating this evidence

against our dialog infection model. Our system, referred toas BotHunter, is composed of a

trio of IDS components that monitor inbound and outbound traffic flows, coupled with our

dialog correlation engine that produces consolidated pictures of successful bot infections.

We envision BotHunter to be located at the boundary of a network, providing it a van-

tage point to observe the network communication flows that occur between the network’s

internal hosts and the Internet. Figure 6 illustrates the components within the BotHunter

package.

Our IDS detection capabilities are composed on top of the open source release of

Snort [86]. We take full advantage of Snort’s signature engine, incorporating an exten-

sive set of malware-specific signatures that we developed internally or compiled from the

highly active Snort community (e.g., [19] among other sources). The signature engine en-

ables us to produce dialog warnings for inbound exploit usage, egg downloading, and C&C

patterns, as discussed in Section 3.2.1.3. In addition, we have developed two custom plug-

ins that complement the Snort signature engine’s ability toproduce certain dialog warnings.
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Figure 6: BotHunter system architecture.

We refer to the various IDS alarms asdialog warningsbecause we do not intend the indi-

vidual alerts to be processed by administrators in search ofbot or worm activity. Rather,

we use the alerts produced by our sensors as input to drive a bot dialog correlation analysis,

the results of which are intended to capture and report the actors and evidence trail of a

complete bot infection sequence.

Our two custom BotHunter plugins are called SCADE (Statistical sCan Anomaly De-

tection Engine) and SLADE (Statistical payLoad Anomaly Detection Engine). SCADE,

discussed in Section 3.2.1.1, provides inbound and outbound scan detection warnings that

are weighted for sensitivity toward malware-specific scanning patterns. SLADE, discussed

in Section 3.2.1.2, conducts a byte-distribution payload anomaly detection of inbound pack-

ets, providing a complementary non-signature approach in inbound exploit detection.

The BotHunter correlator, discussed in Section 3.2.2, is responsible for maintaining an

assessment of all dialog exchanges, as seen through our sensor dialog warnings, between

all local hosts communicating with external entities across the Internet. The BotHunter

correlator manages the state of all dialog warnings produced per local host in a data struc-

ture we refer to as thenetwork dialog correlation matrix(Figure 7). Evidence of local host
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infection is evaluated and expired from BotHunter correlator until a sufficient combination

of dialog warnings (E1–E5) crosses a weighted threshold. When the bot infection threshold

is crossed for a given host, we produce a bot infection profile(illustrated in Figure 11).

Finally, our correlator also incorporates a module that allows users to report bot infec-

tion profiles to a remote repository for global collection and evaluation of bot activity. For

this purpose, we utilize the Cyber-TA privacy-enabled alert delivery infrastructure [79].

Our delivery infrastructure first anonymizes all source-local addresses reported within the

bot infection profile, and then delivers the profile to our data repository through a TLS-

over-TOR [35] (onion routing protocol) network connection. These profiles will be made

available to the research community, ideally to help in the large-scale assessment of bot

dialog behavior, the sources and volume of various bot infections, and for surveying where

C&C servers and exploit sources are located.

3.2.1 A Multiple-Sensor Approach to Gathering Infection Evidence

3.2.1.1 SCADE: Statistical sCan Anomaly Detection Engine

Recent measurement studies suggest that modern bots are packaged with around 15 exploit

vectors on average [82] to improve opportunities for exploitation. Depending on how the

attack source scans its target, we are likely to encounter some failed connection attempts

prior to a successful infection.

To address this aspect of malware interaction, we have designed SCADE, a Snort pre-

processor plug-in with two modules, one for inbound scan detection (E1 dialog warnings)

and another for detecting outbound attack propagations (E5dialog warnings) once our lo-

cal system is infected. SCADE E1 alarms provide a potential early bound on the start of an

infection, should this scan eventually lead to a successfulinfection.

Inbound Scan Detection: SCADE is similar in principle to existing scan detection

techniques like [57, 86]. However, SCADE has been specifically weighted toward the de-

tection of scans involving the ports often used by malware. It is also less vulnerable to DoS
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attacks because its memory trackers do not maintain per-external-source-IP state. Similar

to [119], SCADE tracks only scans that are specifically targeted to internal hosts, bounding

its memory usage to the number of inside hosts. SCADE also bases its E1 scan detection

on failed connection attempts, further narrowing its processing. We define two types of

ports:HS (high-severity) ports representing highly vulnerable andcommonly exploited ser-

vices (e.g., 80/HTTP, 135,1025/DCOM, 445/NetBIOS, 5000/UPNP, 3127/MyDoom) and

LS (low-severity) ports.3 Currently, we define 26 TCP and 4 UDPHS ports and mark all

others asLS ports. We set different weights to a failed scan attempt to different types of

ports. An E1 dialog warning for a local host is produced basedon an anomaly score that is

calculated ass = w1Fhs + w2Fls , whereFhs andFls indicate numbers of cumulative failed

attempts at high-severity and low-severity ports, respectively.

Outbound Scan Detection:SCADE’s outbound scan detection coverage for E5 dialog

warnings is based on a voting scheme (AND, OR or MAJORITY) of three parallel anomaly

detection models that track all outbound connections per internal host:

• Outbound scan rate (s1): Detects local hosts that conduct high-rate scans across large

sets of external addresses.

• Outbound connection failure rate (s2): Detects abnormally high connection fail rates,

with sensitivity toHS port usage. We calculate the anomaly scores2 = (w1Fhs +

w2Fls)/C, whereC is the total number of scans from the host within a time window.

• Normalized entropy of scan target distribution (s3): Calculates a Zipf (power-law)

distribution [10] of outbound address connection patterns. A uniformly distributed

scan target pattern provides an indication of a potential outbound scan. We use an

anomaly scoring technique based on normalized entropy to identify such candidates:

s3 = H
ln(m) , where the entropy of scan target distribution isH = −

∑m
i =1 pi ln(pi ), m

3The setting is based on data obtained by analyzing vulnerability reports, malware infection vectors, and
analysis reports of datasets collected atDshield.org and other honeynets.
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is the total number of scan targets, andpi is the percentage of the scans at targeti.

Each anomaly module issues a sub-alert whensi ≥ ti , whereti is a threshold. SCADE

then uses a user-configurable “voting scheme,” i.e., AND, OR, or MAJORITY, to combine

the alerts from the three modules. For example, the AND rule dictates that SCADE issues

an alert when all three modules issue alerts. The user can choose a proper combination

depending on the desired false positive rate (F P ).

3.2.1.2 SLADE: Statistical PayLoad Anomaly Detection Engine

SLADE is an anomaly-based engine for payload exploit detection. It examines the payload

of every request packet sent to monitored services and outputs an alert if its lossy n-gram

frequency deviates from an established normal profile.

SLADE is similar to PAYL [110], which is an anomaly detectionscheme based on 1-

gram payload byte distribution. PAYL examines the 1-gram byte distribution of the packet

payload, i.e., it extracts 256 features each representing the occurrence frequency of one of

the 256 possible byte values in the payload. A normal profile for a service/port, e.g., HTTP,

is constructed by calculating the average and standard deviation of the feature vector of the

normal traffic to the port. PAYL calculates deviation distance of a test payload from the

normal profile using a simplified Mahalanobis distance,d(x, y) =
∑255

i =0(|xi −yi |)/(σi +α),

whereyi is the mean,σi is the standard deviation, andα is a smoothing factor. A payload

is considered as anomalous if this distance exceeds a predetermined threshold. PAYL is

effective in detecting worm exploits with a reasonable false positive rate as shown in [110,

111]. However, it could be evaded by a polymorphic blending attack (PBA) [38]. As

discussed in [38,76,111], a generic n-gram version of PAYL may help to improve accuracy

and the hardness of evasion. The n-gram scheme extracts n-byte sequence information

from the payload, which helps in constructing a more precisemodel of the normal traffic

compared to the single-byte (i.e., 1-gram) frequency-based model. In the n-gram scheme

the feature space in use is not 256, but256n . It is impractical to store and compute in a
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256n dimensional space for a full n-gram scheme when n is large.

SLADE makes the n-gram scheme practical by using a lossy structure while still main-

taining approximately the same accuracy as the original full n-gram version. We use a fixed

vector counter (with sizev) to store a lossy n-gram distribution of the payload. When pro-

cessing a payload, we sequentially scan n-gram substringstr, apply some universal hash

functionh(), and increment the counter at the vector space indexed byh(str) mod v. We

then calculate the distribution of the hashed n-gram indices within this (much) smaller vec-

tor spacev. We defineF as the feature space of n-gram PAYL (with a total of256n distinct

features), andF’ as the feature space of SLADE (withv features).

This hash function provides a mapping fromF to F’ that we utilize for space efficiency.

We require onlyv (e.g.,v = 2, 000), whereas n-gram PAYL needs256n (e.g., even for a

small n=3,2563 = 224 ≈ 16M). The computational complexity in examining each payload

is still linear (O(L), whereL is the length of payload), and the complexity in calculating

distance isO(v) instead of256n . Thus, the runtime performance of SLADE is comparable

to 1-gram PAYL. Also note that although both using hash techniques, SLADE is different

from Anagram [109], which uses a Bloom filter to store all n-gram substrings from normal

payloads. The hash function in SLADE is for feature compression and reduction, however

the hash functions in Anagram are to reduce the false positives of string lookup in Bloom

filter. In essence, Anagram is like a content matching scheme. It builds a huge knowledge

base of all known good n-gram substrings using efficient storage and query optimizations

provided by bloom filters, and examines a payload to determine whether the number of its

n-gram substrings not in the knowledge base exceeds a threshold.

A natural concern of using such a lossy data structure is the issue of accuracy: how

many errors (false positives and false negatives) may be introduced because of the lossy

representation? To answer this question, we perform the following simple analysis.4 Let

4We consider our analysis not as an exact mathematical proof,but an analytical description about the
intuition behind SLADE.
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us first overview the reason why the original n-gram PAYL can detect anomalies. We use

γ to represent the number of non-zero value features inF for a normal profile used by

PAYL. Similarly, γ′ is the number of non-zero value features inF’ for a normal profile used

by SLADE. For a normal payload oflength = L, there is a total ofl = (L − n + 1)

n-gram substrings. Among thesel substrings,1 − βn percent substrings converge toγ

distinct features in the normal profile, i.e., these substrings share similar distributions as

the normal profile. The remaining (small portion)βn percent of substrings are considered

as noise substrings that do not belong to theγ features in the normal profile. For a malicious

payload, if it can be detected as an anomaly, it should have a much larger portion of noise

substringsβa (βa > βn ).

We first analyze the false positives when using the lossy structure representation to see

how likely SLADE will detect a normal (considered normal by n-gram PAYL) payload as

anomalous. For a normal payload, the hashed indices of a1−βn portion of substrings (that

converge toγ distinct features inF for the normal profile of PAYL) should now converge

in the new vector space (intoγ′ distinct features inF’ for the normal profile of SLADE).

Because of the universal hash function, hashed indices of theβn portion of noise substrings

are most likely uniformly distributed intoF’. As a result, some of the original noise sub-

strings may actually be hashed to theγ′ distinct features in the normal profile of SLADE

(i.e., they may not be noise in the new feature space now). Thus, the deviation distance

(i.e., the anomaly score) can only decrease in SLADE. Hence,we conclude that SLADE

may not have a higher false positive rate than n-gram PAYL.

Now let us analyze the false negative rate, i.e., the likelihood that SLADE will treat

a malicious payload (as would be detected by n-gram PAYL) as normal. False negatives

happen when the hash collisions in the lossy structure mistakenly map aβa portion of noise

substrings into theγ′ features (i.e., the normal profile) for SLADE. By using the universal

hash function, the probability for a noise substring to fallinto γ′ out ofv space is ′

v . Thus,

the probability for all thelβa noise substrings to collide into theγ′ portion is about(  ′

v )l� a.
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For example, if we assumev = 2, 000, γ′ = 200, lβa = 100, then this probability is about

(200/2000)100 = 10−100 ≈ 0. In practice, the probability of such collisions for partial

noise substrings is negligible. Thus, we believe that SLADEdoes not incur a significant

accuracy penalty compared to full n-gram PAYL, while significantly reducing its storage

and computation complexity.

We measured the performance of SLADE in comparison to 1-gramPAYL by using

the same data set as in [76]. The training and test data sets used were from the first and

following four days of HTTP requests from the Georgia Tech campus network, respectively.

The attack data consists of 18 HTTP-based buffer overflow attacks, including 11 regular

(nonpolymorphic) exploits, 6 mimicry exploits generated by CLET, and 1 polymorphic

blending attack used in [38] to evade 2-gram PAYL. In our experiment, we setn = 4, v =

2, 048.5

Table 2 summarizes our experimental results. Here, DFP is the desired false positive

rate, i.e., the rejection rate in the training set. RFP is the“real” false positive rate in our

test data set. The detection rate is measured on the attack data set and is defined as the

number of attack packets classified as anomalous divided by the total number of packets

in the attack instances. We conclude from the results that SLADE performs better with

respect to both DFP and RFP than the original PAYL (1-gram) system. Furthermore, we

discovered that the minimum RFP for which PAYL is able to detect all attacks, including

the polymorphic blending attack, is 4.02%. This is usually considered intolerably high for

network intrusion detection. On the other hand, the minimumRFP required for SLADE

to detect all attacks is 0.3601%. As shown in [76], 2-gram PAYL does not detect the

polymorphic blending attack even if we are willing to tolerate an RFP as high as 11.25%.

This is not surprising given that the polymorphic blending attack we used was specifically

tailored to evade 2-gram PAYL. We also find that SLADE is comparable to (or even better

5One can also choose a randomv to better defeat evasion attacks like PBA. Also one may use multiple
different hash functions and vectors for potentially better accuracy and hardness of evasion.
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than) a well-constructed ensemble IDS that combines 11 one-class SVM classifiers [76],

and detects all the attacks, including the polymorphic blending attack, for an RFP at around

0.49%. SLADE also has the added advantage of more efficient resource utilization, which

results in shorter training and execution times when compared to the ensemble IDS.

Table 2: Performance comparison of 1-gram PAYL and SLADE.
DFP(%) 0.0 0.01 0.1 1.0 2.0 5.0 10.0

PAYL RFP(%) 0.00022 0.01451 0.15275 0.92694 1.86263 5.69681 11.05049
Detected Attacks 1 4 17 17 17 18 18
Detection Rate(%) 0.8 17.5 69.1 72.2 72.2 73.8 78.6

SLADE RFP(%) 0.0026 0.0189 0.2839 1.9987 3.3335 6.3064 11.0698
Detected Attacks 3 13 17 18 18 18 18
Detection Rate(%) 20.6 74.6 92.9 99.2 99.2 99.2 99.2

3.2.1.3 Signature Engine: Bot-Specific Heuristics

Our final sensor contributor is the Snort signature engine. This module plays a significant

role in detecting several classes of dialog warnings from our bot infection dialog model.

Snort is our second sensor source for direct exploit detection (E2), and our primary source

for binary downloading (E3) and C&C communications (E4). Weorganize the rules se-

lected for BotHunter into four separate rule files, covering1046 E2 rules, 71 E3 rules, 246

E4 rules, and a small collection of 20 E5 rules, for total of 1383 heuristics. The rules are

primarily derived from the Bleeding-Edge [19] and SourceFire’s registered free rulesets.

All the rulesets were selected specifically for their relevance to malware identification.

Our rule selections are continually tested and reviewed across operational networks and our

live honeynet environment. It is typical for our rule-basedheuristics to produce less than

300 dialog warnings per 10-day period monitoring an operational border switch space port

of approximately 130 operational hosts (SRI Computer Science Laboratory).

Our E2 ruleset focuses on the full spectrum of external to internal exploit injection at-

tacks, and has been tested and augmented with rules derived from experimentation in our

medium and high interactive honeynet environment, where wecan observe and validate

live malware infection attempts. Our E3 rules focus on (malware) executable download
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events from external sites to internal networks, covering as many indications of (mali-

cious) binary executable downloads and download acknowledgment events as are in the

publicly available Snort rulesets. Our E4 rules cover internally-initiated bot command and

control dialogs, and acknowledgment exchanges, with a significant emphasis on IRC and

URL-based bot coordination.6 Also covered are commonly used Trojan backdoor commu-

nications, and popular bot commands built by keyword searching across common major

bot families and their variants. A small set of E5 rules is also incorporated to detect well-

known internal to external attacks and backdoor sweeps, while SCADE provides the more

in-depth hunt for general outbound port scanning.

3.2.2 Dialog-based IDS Correlation Engine

The BotHunter correlator tracks the sequences of IDS dialogwarnings that occur between

each local host and those external entities involved in these dialog exchanges. Dialog warn-

ings are tracked over a temporal window, where each contributes to an overall infection

sequence score that is maintained per local host. We introduce a data structure called the

network dialog correlation matrix, which is managed, pruned, and evaluated by our cor-

relation engine at each dialog warning insertion point. Ourcorrelator employs a weighted

threshold scoring function that aggregates the weighted scores of each dialog warning,

declaring a local host infected when a minimum combination of dialog transactions occur

within our temporal pruning interval.

Figure 7 illustrates the structure of ournetwork dialog correlation matrix. Each dynamically-

allocated row corresponds to a summary of the ongoing dialogwarnings that are raised

between an individual local host and other external entities. The BotHunter correlator

manages the five classes of dialog warnings presented in Section 3.1 (E1 through E5), and

each event cell corresponds to one or more (possibly aggregated) sensor alerts that map into

one of these five dialog warning classes. This correlation matrix dynamically grows when

6E4 rules are essentially protocol, behavior and payload content signature, instead of a hard-coded known
C&C domain list.
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new activity involving a local host is detected, and shrinkswhen the observation window

reaches an interval expiration. The memory usage of the correlation matrix is very efficient

because the matrix is bounded by the size of total active internal hosts.

!"#$% &'(#% )*+,-% ./% .0% .1% .2% .3%
192.168.12.1  Aa…Ab     
192.168.10.45   Ac…Ad  Ae…Af  
192.168.10.66   Ag    
192.168.12.46     Ah…Ai Aj…Ak 

:       
192.168.11.123  Al Am…An Ao   
 

Figure 7: BotHunter network dialog correlation matrix.

In managing the dialog transaction history we employ an interval-based pruning algo-

rithm to remove old dialog from the matrix. In Figure 7, each dialog may have one or

two expiration intervals, corresponding to asoft prune timer(the open-faced clocks) and

a hard prune timer(the filled clocks). The hard prune interval represents a fixed temporal

interval over which dialog warnings are allowed to aggregate, and the end of which re-

sults in the calculation of our threshold score. The soft prune interval represents a smaller

temporal window that allows users to configure tighter pruning interval requirements for

high-production dialog warnings (inbound scan warnings are expired more quickly by the

soft prune interval), while the others are allowed to accumulate through the hard prune

interval. If a dialog warning expires solely because of a soft prune timer, the dialog is

summarily discarded for lack of sufficient evidence (an example is row 1 in Figure 7 where

only E1 has alarms). However, if a dialog expires because of ahard prune timer, the dialog

threshold score is evaluated, leading either to a bot declaration or to the complete removal

of the dialog trace should the threshold score be found insufficient.

To declare that a local host is infected, BotHunter must compute a sufficient and mini-

mum threshold of evidence (as defined in Section 3) within itspruning interval. BotHunter

employs two potential criteria required for bot declaration: 1) an incoming infection warn-

ing (E2) followed by outbound local host coordination or exploit propagation warnings
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(E3-E5), or 2) a minimum of at least two forms of outbound bot dialog warnings (E3-E5).

To translate these requirements into a scoring algorithm weemploy a regression model to

estimate dialog warning weights and a threshold value, and then test our values against a

corpus of malware infection traces. We define an expectationtable of predictor variables

that match our conditions and apply a regression model wherethe estimated regression

coefficients are the desired weights shown in Table 3.

Table 3: Estimated regression coefficients as initial weighting.
Coefficients Standard Error

E1 0.09375 0.100518632
E2 rulebase 0.28125 0.075984943
E2 SLADE 0.09375 0.075984943
E3 0.34375 0.075984943
E4 0.34375 0.075984943
E5 0.34375 0.075984943

Figure 8: Scoring plot from expectation table.

These coefficients provide an approximate weighting systemto match the initial expec-

tation table.7 We apply these values to our expectation table data to establish a threshold

between bot and no-bot declaration. Figure 8 illustrates our results, where bot patterns are

7In our model, we define E1 scans and the E2 anomaly score (produced by SLADE) as increasers to
infection confidence, such that our model lowers their weight influence.
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at X-axis value 1, and non-bot patterns are at X-axis 0. Bot scores are plotted vertically

on the Y-axis. We observe that all but one non-bot patterns score below 0.6, and all but

2 bot patterns score above 0.65. Next, we examine our scoringmodel against a corpus of

BotHunter IDS warning sets produced from successful bot andworm infections captured

in the SRI honeynet between March and April 2007. Figure 9 plots the actual bot scores

produced from these real bot infection traces. All observations produce BotHunter scores

of 0.65 or greater.

Figure 9: Scoring plot: 2019 real bot infections.

When a dialog sequence is found to cross the threshold for botdeclaration, BotHunter

produces abot profile.The bot profile represents a full analysis of roles of the dialog par-

ticipants, summarizes the dialog alarms based on which dialog classes (E1-E5) the alarms

map, and computes the infection time interval. Figure 11 provides an example of a bot pro-

file produced by the BotHunter correlation engine. The bot profile begins with an overall

dialog anomaly score, followed by the IP address of the infected target (the victim ma-

chine), infector list, and possible C&C server. Then it outputs the dialog observation time

and reporting time. The raw alerts specific to this dialog arelisted in an organized (E1-E5)

way and provide some detailed information.
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3.3 Evaluating Detection Performance

To evaluate BotHunter’s performance, we conducted severalcontrolled experiments as well

as real world deployment evaluations. We begin this sectionwith a discussion of our de-

tection performance while exposing BotHunter to infections from a wide variety of bot

families usingin situ virtual network experiments. We then discuss a larger set oftrue

positive and false negative results while deploying BotHunter to a live high-interaction

honeynet. This recent experiment exposed BotHunter to 7,204 instances of Windows XP

and Windows 2000 direct-exploit malware infections from the Internet. We follow these

controlled experiments with a brief discussion of an example detection experience using

BotHunter during a live operational deployment.

Next, we discuss our broader testing experiences in two network environments. Here,

our focus is on understanding BotHunter’s daily false positive (F P ) performance, at least

in the context of two significantly different operational environments. A false positive in

this context refers to the generation of abot profile in response to a non-infection traf-

fic flow, not to the number of IDS dialog warnings produced by the BotHunter sensors.

As stated previously, network administrators are not expected to analyze individual IDS

alarms. Indeed, we anticipate external entities to regularly probe and attack our networks,

producing a regular flow of dialog warnings. Rather, we assert (and validate) that the dia-

log combinations necessary to cause a bot detection should be rarely encountered in normal

operations.

3.3.1 Experiments in anIn situ Virtual Network

Our evaluation setup uses a virtual network environment of three VMware guest systems.

The first is a Linux machine with IRC server installed, which is used as the C&C server, and

the other two are Windows 2000 instances. We infect one of theWindows instances and

wait for it to connect to our C&C server. Upon connection establishment, we instruct the

bot to start scanning and infecting neighboring hosts. We then await the infection and IRC
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C&C channel join by the second Windows instance. By monitoring the network activity of

the second victim, we capture the full infection dialog. This methodology provides a useful

means to measure the false negative performance of BotHunter.

We collected 10 different bot variants from three of the mostwell-known IRC-based bot

families [12]: Agobot/Gaobot/Phatbot, SDBot/RBot/UrBot/UrXBot, and the mIRC-based

GTbot. We then ran BotHunter in this virtual network and limited its correlation focus on

the victim machine (essentially we assume the HOMENET is thevictim’s IP). BotHunter

successfully detected all bot infections (and produced botprofiles for all).

We summarize our measurement results for this virtual network infection experiment

in Table 4. We use Yes or No to indicate whether a certain dialog warning is reported

in the final profile. The two numbers within brackets are the number of generated dialog

warnings in the whole virtual network and the number involving our victim, respectively.

For example, for Phatbot-rls, 2,834 dialog warnings are generated by E2[rb] ([rb] means

Snort rule base, [sl] means SLADE), but only 46 are relevant to our bot infection victim.

Observe that although many warnings are generated by the sensors, only one bot profile

is generated for this infection. This shows that BotHunter can significantly reduce the

amount of information a security administrator needs to analyze. In our experiments almost

all sensors worked as we expected. We do not see E1 events for RBot because the RBot

family does not provide any commands to trigger a vertical scan for all infection vectors

(such as the “scan.startall” command provided by the Agobot/Phatbot family). The bot

master must indicate a specific infection vector and port foreach scan. We set our initial

infection vector to DCOM, and since this was successful the attacking host did not attempt

further exploits.

Note that two profiles are reported in the gt-with-dcom case.In the first profile, only

E2[rb],E2[sl] and E4 are observed. In profile 2, E4 and E5 are observed (which is the case

where we miss the initial infection periods). Because this infection scenario is very slow

and lasts longer than our 4-minute correlation time window.Furthermore, note that we do
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Table 4: BotHunter detection and dialog summary of virtual network infections.
E1 E2[rb] E2[sl] E3 E4 E5

agobot3-priv4 Yes(2/2) Yes(9/8) Yes(6/6) Yes(5) Yes(38/8) Yes(4/1)
phat-alpha5 Yes(14/4) Yes(5,785/5,721) Yes(6/2) Yes(3/3) Yes(28/26) Yes(4/2)
phatbot-rls Yes(11/3) Yes(2,834/46) Yes(6/2) Yes(8/8) Yes(69/20) Yes(6/2)
rbot0.6.6 No(0) Yes(2/1) Yes(2/1) Yes(2/2) Yes(65/24) Yes(2/1)
rxbot7.5 No(0) Yes(2/2) Yes(2/2) Yes(2/2) Yes(70/27) Yes(2/1)
rx-asn-2-re-workedv2 No(0) Yes(4/3) Yes(3/2) Yes(2/2) Yes(59/18) Yes(2/1)
Rxbot-ak-0.7-Modded.by.Uncanny No(0) Yes(3/2) Yes(3/2) Yes(2/2) Yes(73/26) Yes(2/1)
sxtbot6.5 No(0) Yes(3/2) Yes(3/2) Yes(2/2) Yes(65/24) Yes(2/1)
Urx-Special-Ed-UltrA-2005 No(0) Yes(3/2) Yes(3/2) Yes(2/2) Yes(68/22) Yes(2/1)
gt-with-dcom-profile1 No(1/0) Yes(5/3) Yes(6/2) No(0) Yes(221/1) No(4/0)
gt-with-dcom-profile2 No(1/0) No(5/0) No(6/0) No(0) Yes(221/44) Yes(4/2)
gt-with-dcom-10min-profile No(1/0) Yes(5/3) Yes(6/3) No(0) Yes(221/51) Yes(4/2)

not have any detected E3 dialog warnings reported for this infection sequence. Regard-

less, BotHunter successfully generates an infection profile. This demonstrates the utility of

BotHunter’s evidence-trail-based dialog correlation model. We also reran this experiment

with a 10-minute correlation time window, upon which BotHunter also reported a single

infection profile.

3.3.2 SRI Honeynet Experiments

Our experimental honeynet framework has three integral components.

• The first component,Drone manager, is a software management component that is

responsible for keeping track of drone availability and forwarding packets to various

VMware instances. The address of one of the interfaces of this Intel Xeon 3 GHz dual

core system is set to be the static route for the unused /17 network. The other interface

is used for communicating with the high-interaction honeynet. Packet forwarding is

accomplished using network address translation. One important requirements for this

system is to keep track of infected drone systems and to recycle uninfected systems.

Upon detecting a probable infection (outbound connections), we mark the drone as

“tainted” to avoid reassigning that host to another source.Tainted drones are saved

for manual analysis or automatically reverted back to previous clean snapshots after

a fixed timeout. One of the interesting observations during our study was that most

infection attempts did not succeed even on completely unpatched Windows 2000 and
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Windows XP systems. As a result, a surprisingly small numberof VM instances was

sufficient to monitor the sources contacting the entire /17 network.

• The second component is thehigh-interaction-honeynetsystem, which is hosted in

a high-performance Intel Xeon 3 GHz dual core, dual CPU system with 8 GB of

memory. For the experiments listed in this chapter, we typically ran the system with

9 Win-XP instances, 14 Windows 2000 instances (with two different service pack

levels), and 3 Linux FC3 instances. The system was moderately utilized in this load.

• The final component is theDNS/DHCP server, which dynamically assigns IP ad-

dresses to VMware instances and also answers DNS queries from these hosts.

Over a 3-month period between May and July 2007, we analyzed atotal of 7,204 suc-

cessful WinXP and Win2K remote-exploit bot infections. Each malware infection instance

succeeded in causing the honeypot to initiate outbound communications related to the in-

fection. Through our analysis of these traces using BotHunter sensor logs, we were able

to very reliably observe the malware communications associated with the remote-to-local

network service infection and the malware binary acquisition (egg download). In many in-

stances we also observed the infected honeypot proceed to establish C&C communications

and attempt to propagate to other victims in our honeynet. Through some of this experi-

ment, our DNS service operated unreliably and some C&C coordination events were not

observed due to DNS lookup failures.

Figure 10 illustrates a sample infection that was detected using the SRI honeynet, and

Figure 11 shows its corresponding BotHunter profile. W32/IRCBot-TO is a recent (re-

leased January 19, 2007) bot that propagates through open network shares and affects both

Windows 2000 and Windows XP systems [92]. The bot uses the IPCshare to connect to

theSRVSVC pipe and leverages the MS06-40 exploit [69], which is a buffer overflow that

enables attackers to craft RPC requests that can execute arbitrary code. This mechanism is

used to force the victim to fetch and execute a binary named netadp.exe from the system
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6 <-> <infector-ip> TCP 2971 - <honey-ip> 445 [SYN, SYN,ACK]
13 -> SMB Negotiate Protocol Request
14 <- SMB Negotiate Protocol Response
17 -> SMB Session Setup AndX Request, NTLMSSP_AUTH, User: \
18 <- SMB Session Setup AndX Response
19 -> SMB Tree Connect AndX Request, Path: \\<honey-ip>\IPC\$
20 <- SMB Tree Connect AndX Response
21 -> SMB NT Create AndX Request, Path: \browser
22 <- SMB NT Create AndX Response, FID: 0x4000
23 -> DCERPC Bind: call_id: 0 UUID: SRVSVC
24 <- SMB Write AndX Response, FID: 0x4000, 72 bytes
25 -> SMB Read AndX Request, FID: 0x4000, 4292 bytes at offset 0
26 <- DCERPC Bind_ack
27 -> SRVSVC NetrpPathCanonicalize request
28 <- SMB Write AndX Response, FID: 0x4000, 1152 bytes
29 -> SMB Read AndX Request, FID: 0x4000, 4292 bytes at offset 0

Initiating Egg download
30 <-> <honey-ip> TCP 1028 - <infector-ip> 8295 [SYN, SYNACK]
34-170 114572 byte egg download ...

Connecting to IRC server on port 8080
174 <-> <honey-ip> TCP 1030 - 66.25.XXX.XXX 8080 [SYN, SYNACK]
176 <- NICK [2K|USA|P|00|eOpOgkIc]\r\nUSER 2K-USA
177 -> :server016.z3nnet.net NOTICE AUTH

:*** Looking up your hostname...\r\n’’ ...
179 -> ... PING :B203CFB7
180 <- PONG :B203CFB7
182 -> Welcome to the z3net IRC network ...

Joining channels and setting mode to hidden
183 -> MODE [2K|USA|P|00|eOpOgkIc] +x\r\nJOIN ##RWN irt3hrwn\r\n

Start scanning 203.0.0.0/8
185 -> ....scan.stop -s; .scan.start NETAPI 40 -b -s;

.scan.start NETAPI 203.x.x.x 20 -s;

.scan.start NETAPI 20 -a -s;.scan.start SYM 40 -b -s;

.scan.start MSSQL 40 -b -s\r\n...
191 -> 203.7.223.231 TCP 1072 > 139 [SYN]
192 -> 203.199.174.117 TCP 1073 > 139 [SYN] scan,scan...

Figure 10: Honeynet interaction summary for W32/IRCBot-TO.

folder. The infected system then connects to the z3net IRC network and joins two chan-

nels upon which it is instructed to initiate scans of 203.0.0.0/8 network on several ports.

Other bot families successfully detected by BotHunter included variants of W32/Korgo,

W32/Virut.A and W32/Padobot.

Overall, BotHunter detected a total of 7,190 of these 7,204 successful bot infections.

This represents a99.8% true positive rate. Most malware instances observed duringthis

period transmitted their exploits through ports TCP-445 orTCP-139. This is a very com-

mon behavior, as the malware we observe tends to exploit the first vulnerable port that

replies to a targeted scans, and ports TCP-445 and TCP-139 are usually among the first

ports tested.

This experiment produced 14 bot infections thatdid not produce bot profiles, i.e., a

0.002% false negative rate. To explain these occurrences we manually examined each

bot infection trace that eluded BotHunter, usingTcpdump andEthereal. The main
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Score: 1.95 (>= 0.80)
Infected Target: <honey-ip>
Infector List: <infector-ip>
C & C List: 66.25.XXX.XXX
Observed Start: XX/XX/2007 23:46:54.56 PST
Gen. Time: XX/XX/2007 23:47:13.18 PST

INBOUND SCAN <unobserved>

EXPLOIT
event=1:2971 tcp E2[rb] NETBIOS SMB-DS IPC\$
unicode share access 445<-2971 (23:46:54.56 PST)
---------------------------------------
event=1:99913 tcp E2[rb] SHELLCODE x86 0x90
unicode NOOP 445<-2971 (23:46:54.90 PST)

EXPLOIT (slade)
event=552:5555002 (15) tcp E2[sl] Slade detected suspicious
payload exploit with anomaly score 1843.680342.

EGG DOWNLOAD
event=1:5001683 tcp E3[rb] Windows executable
sent potential malware egg 1028<-8295 (01:45:56.69 EST)

C&C TRAFFIC
event=1:2002023 tcp E4[rb] BLEEDING-EDGE TROJAN
IRC USER command 1030->8080 (23:47:01.23 PST)
---------------------------------------
event=1:2002024 tcp E4[rb] BLEEDING-EDGE TROJAN
IRC NICK command 1030->8080 (23:47:01.23 PST)
---------------------------------------
event=1:2002025 tcp E4[rb] BLEEDING-EDGE TROJAN
IRC JOIN command 1030->8080 (23:47:03.79 PST)

OUTBOUND SCAN
event=1:2001579 tcp E5[rb] BLEEDING-EDGE Behavioral Unusual Port
139 traffic, Potential Scan or Infection 1089->139 (01:46:06 EST)
---------------------------------------
event=555:5555005 tcp E5[sc] scade detected scanning of 21 IPs
(fail ratio=0:0/21): 0->0 (01:46:06 EST)

Figure 11: Corresponding BotHunter profile for W32/IRCBot-TO.

reason for these failed bot detections is simply because of infection failures, i.e., the exploit

apparently led to instability and eventual failure in the infected host. More commonly, we

observed cases in which the infected victim attempted to download the egg or “phone

home,” but the connection request received no actual reply (most likely the remote host

such as C&C server was down).

Lessons:In an earlier evaluation, we had a higher false negative rate. For example,

previously in a 3-week period between March and April 2007, BotHunter missed 99 out

of 2,019 successful infections, i.e., a 4.9% false negativerate. However, when we investi-

gated the reasons, we found that they were not due to the detection capability of BotHunter.

In addition to infection failures in bots as discussed before, we identified some honeynet

implementation, setup and policy failures. We observed that our NAT mechanism did not

correctly translate application-level address requests (e.g., ftp PORT commands). This

prevented several FTP egg download connection requests from proceeding, which would
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have otherwise led to egg download detections. In addition,some traces were incomplete

due to errors in our honeypot recycling logic which interfered with our observation of the

infection logic. Some implementation bugs in honeypot and Drone manager also caused

corruption in network traffic data. We then fixed these problems and re-evaluated BotH-

unter, as showed above.

Discussion:In addition to the above false negative experiences, we alsorecognize that

other reasons could potentially prevent BotHunter from detecting infections. A natural ex-

tension of theinfection failuresis for a bot to purposely lay dormant once it has infected a

host to avoid association of the infection transmission with an outbound egg download or

coordination event. This strategy could be used successfully to circumvent BotHunter de-

ployed with our default fixed pruning interval. While we found some infected victims failed

to phone home, we could also envision the egg download sourceeventually responding to

these requests after the BotHunter pruning interval, causing a similar missed association.

Sensor coverage is of course another fundamental concern for any detection mechanism.

Finally, while these results are highly encouraging, the honeynet environment provided a

low-diversity in bot infections, in which attention was centered on direct exploits of TCP-

445 and TCP-139. We did not provide a diversity of honeypots with various OSs, vulnera-

ble services, or Trojan backdoors enabled, to fully examinethe behavioral complexities of

bots.

3.3.3 An Example Detection in a Live Deployment

In addition to our laboratory and honeynet experiences, we have also fielded BotHunter

to networks within the Georgia Tech campus network and within an SRI laboratory net-

work. In the next sections we will discuss these deploymentsand our efforts to evaluate

the false positive performance of BotHunter. First, we willbriefly describe one example

host infection that was detected using BotHunter within ourGeorgia Tech campus network

experiments.
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In early February 2007, BotHunter detected a bot infection that produced E1, E4 and

E5 dialog warnings. Upon inspection of the bot profile, we observed that the bot-infected

machine was scanned, joined an IRC channel, and began scanning other machines during

the BotHunter time window. One unusual element in this experience was the omission

of the actual infection transmission event (E2), which is observed with high-frequency in

our live honeynet testing environment. We assert that the bot profile represents an actual

infection because during our examination of this infectionreport, we discovered that the

target of the E4 (C&C Server) dialog warning was an address that was blacklisted both by

the ShadowServer (http://www.shadowserver.org/) and the botnet mailing list

as a known C&C server during the time of our bot profile.

3.3.4 Experiments in a University Campus Network

In this experiment, we evaluate the detection and false positive performance of BotHunter

in a production campus network (at the College of Computing,Georgia Tech). The time

period of this evaluation was between October 2006 and February 2007.

The monitored link exhibits typical diurnal behavior and a sustained peak traffic of

over 100 Mbps during the day. While we were concerned that such traffic rates might

overload typical NIDS rulesets and real-time detection systems, our experience shows that

it is possible to run BotHunter live under such high traffic rates using commodity PCs. Our

BotHunter instance runs on a Linux server with an Intel Xeon 3.6 GHz CPU and 6 GB

of memory. The system runs with average CPU and memory utilization of 28% and 3%,

respectively.

To evaluate the representativeness of this traffic, we randomly sampled packets for anal-

ysis (about 40 minutes). The packets in our sample, which were almost evenly distributed

between TCP and UDP, demonstrated wide diversity in protocols, including popular pro-

tocols such as HTTP, SMTP, POP, FTP, SSH, DNS, and SNMP, and collaborative appli-

cations such as IM (e.g., ICQ, AIM), P2P (e.g., Gnutella, Edonkey, bittorrent), and IRC,
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which share similarities with infection dialog (e.g., two-way communication). We believe

the high volume of background traffic, involving large numbers of hosts and a diverse ap-

plication mix, offers an appealing environment to confirm our detection performance, and

to examine the false positive question.

First, we evaluated the detection performance of BotHunterin the presence of signif-

icant background traffic. We injected bot traffic captured inthe virtual network (from the

experiments described in Section 3.3.1) into the captured Georgia Tech network traffic.

Our motivation was to simulate real network infections for which we have the ground truth

information. In these experiments, BotHunter correctly detected all 10 injected infections

(by the 10 bots described in Section 3.3.1).

Table 5: Dialog warnings (raw alerts) of BotHunter in 4-month operation in CoC network.
Event E1 E2[rb] E2[sl] E3 E4 E5
Alert# 550,373 950,112 316,467 1,013 697,374 48,063

Next, we conducted a longer-term (4 months) evaluation of false alarm production. Ta-

ble 5 summarizes the number of dialog warnings generated by BotHunter for each event

type from October 2006 to early February 2007. BotHunter sensors generated about 2,563,402

(more than 20,000 per day) raw dialog warnings from all the five event categories. For

example, many E3 dialog warnings report on Windows executable downloads, which by

themselves do not shed light on the presence of exploitable vulnerabilities. However, our

experiments do demonstrate that the alignment of the bot detection conditions outline in

Section 3.1 rarely align within a stream of dialog warnings from normal traffic patterns. In

fact, only 98 profiles were generated in 4 months, less than one per day on average.

In further analyzing these 98 profiles, we had the following findings. First, there are no

false positives related to any normal usage of collaborative applications such as P2P, IM, or

IRC. Almost two-thirds (60) of the bot profiles involved access to an MS-Exchange SMB

server (33) and SMTP server (27). In the former case, the bot profiles described a NET-

BIOS SMB-DS IPC$ unicode share access followed by a windows executable downloading
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event. Bleeding Edge Snort’s IRC rules are sensitive to someIRC commands (e.g., USER)

that frequently appear in the SMTP header. These issues could easily be mitigated by

additional whitelisting of certain alerts on these servers. The remaining profiles contained

mainly two event types and with low overall confidence scores. Additional analysis of these

incidents was complicated by the lack of full packet traces in our high-speed network. We

can conservatively assume that they are false positives andthereby our experiments here

provide a reasonable estimate of the upper bound on the number of false alarms (less than

one) in a busy campus network.

3.3.5 Experiments in an Institutional Laboratory

We deployed BotHunter live on a small well-administered production network (a lightly

used /17 network that we can say with high confidence is infection free). Here, we describe

our results from running BotHunter in this environment. Ourmotivation for conducting

this experiment was to obtain experience with false positive production in an operational

environment, where we could also track all network traces and fully evaluate the conditions

that may cause the production of any unexpected bot profiles.

BotHunter conducted a 10-day data stream monitoring test from the span port posi-

tion of an egress border switch. The network consists of roughly 130 active IP addresses,

an 85% Linux-based host population, and an active user base of approximately 54 people.

During this period, 182 million packets were analyzed, consisting of 152 million TCP pack-

ets (83.5%), 15.8 million UDP packets (8.7%), and 14.1 million ICMP packets (7.7%). Our

BotHunter sensors produced 5,501 dialog warnings, composed of 1,378 E1 scan events, 20

E2 exploit signature events, 193 E3 egg-download signatureevents, 7 E4 C&C signature

events and 3,904 E5 scan events. From these dialog warnings,the BotHunter correlator

produced just one bot profile. Our subsequent analysis of thepackets that caused the bot

profile found that this was a false alarm. Upon packet inspection, it was found that the

session for which the bot declaration occurred consisted ofa 1.6 GB multifile FTP transfer,
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during which a binary image was transferred with content that matched one of our buffer

overflow detection patterns. The buffer overflow false alarmwas coupled with a second

MS Windows binary download, which caused BotHunter to crossour detection threshold

and declare a bot infection.

3.4 Discussion

Several important practical considerations present challenges in extending and adapting

BotHunter for arbitrary networks in the future.

Extending BotHunter to Other NIDS: The correlation engine for BotHunter is com-

pletely oblivious to Snort’s internal structures, intermediate representations, or alert format

specifics. The only input to BotHunter is metadata for classification of alerts into their

respective E1-E5 categories. Developing similar plug-insfor other NIDS such as Bro [74]

is straightforward. In fact, we assume that critical infrastructures would necessarily run

multiple sensors to reduce false negatives. BotHunter willseamlessly merge and correlate

events from these diverse alert streams to produce a unified bot detector.

Adapting to Emerging Threats and Adversaries: Network defense is a perennial

arms race8 and we anticipate that the threat landscape could evolve in several ways to evade

BotHunter. First, bots could use encrypted communication channels for C&C. Second, they

could adopt more stealthy scanning techniques. However, the fact remains that hundreds of

thousands of systems remain unprotected, attacks still happen in the clear, and adversaries

have not been forced to innovate. Detection systems such as BotHunter would raise the

bar for successful infections. Moreover, BotHunter could be extended with anomaly-based

“entropy detectors” for identification of encrypted channels. We have preliminary results

that are promising and defer deeper investigation to futurework. We also plan to develop

new anomaly-based C&C detection schemes (for E4).

It is also conceivable that if BotHunter is widely deployed,adversaries would devise

8In this race, we consider BotHunter to be a substantial technological escalation for the white hats.
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clever means to evade the system, e.g., by using attacks on BotHunter’s dialog history

timers. One countermeasure is to incorporate an additionalrandom delay to the hard prune

interval, thereby introducing uncertainty into how long BotHunter maintains local dialog

histories.

Incorporating Additional State Logic: The current set of states in the bot infection

model was based on the behavior of contemporary bots. As botsevolve, it is conceivable

that this set of states would have to be extended or otherwisemodified to reflect the cur-

rent threat landscape. This could be accomplished with simple configuration changes to

the BotHunter correlator. We expect such changes to be fairly infrequent as they reflect

fundamental paradigm shifts in bot behavior.

Nevertheless, here we show an example of our recent extension [77] on BotHunter’s

infection dialog model to support detecting P2P spam botnets such as Storm worm [44,52].

This extension is still compatible with the original infection dialog model, which means it

does not affect the detection of bots following the originalmodel. We added two new

specific types of events into the infection dialog model, i.e., local asset attack preparation

and peer coordination.9

• E6: attack preparation. This communication stage represents the locally infected vic-

tim performing activities that are indicative of preparingfor attack propagation. For

example, a high number of contacting multiple mail host IP addresses (e.g., directly

connecting to external SMTP port, or issuing DNS MX queries)by a non-SMTP

server local asset is a potential precursor action for spam distribution.

• E7: peer coordination. A P2P-based bot solicits and receives coordination instruc-

tions from a community of peers within the larger botnet. Theprotocol is used to

synchronize bot actions and accept commands from a hidden controller. For ex-

ample, in Storm, peer coordination occurs via communications that are overlaid on

9Actually, it is better to think that we splited the original E5 into three specific events, E5-E7, including
the two additional events and outbound attack/propagation.
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the eDonkey UDP P2P protocol. The Storm overlay peer communication has some

unique aspects that can be identified by some signature [77].

E2: Inbound
Infection

E1: Inbound
Scan

E3: Egg
Download

E4: C&C
Communication

E5: Outbound
Attack/

Propagation

A-to-V V-to-A

A-to-V

V-to-CV-to-*

V-to-*
E7: Peer

Coordination

E6: Attack
Preparation

V-to-* V-to-*

V-to-*

V-to-*

Figure 12: Extended bot infection dialog model.

The extended dialog model is shown in Figure 12. In addition,we added several

signature-based rules for E6 and E7, and then simply changedthe XML configure file

for BotHunter correlator to support the extension. We evaluated the extended BotHunter

on real-world captured Storm traces, and successfully detected Storm bots.

3.5 BotHunter Internet Distribution

We are making BotHunter available as a free Internet distribution for use in testing and

facilitating research with the hope that this initiative would stimulate community develop-

ment of extensions.

A key component of the BotHunter distribution is the Java-based correlator that by

default reads alert streams from Snort. We have tested our system with Snort 2.6.* and
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it can be downloaded fromhttp://www.cyber-ta.org/botHunter/.10 A note-

worthy feature of the distribution is integrated support for “large-scale privacy-preserving

data sharing.” Users can enable an option to deliver secure anonymous bot profiles to

the Cyber-TA security repository [79], the collection of which we will make available to

providers and researchers. The repository is currently operational and in beta release of its

first report delivery software.

Our envisioned access model is similar to that of DShield (http://www.dshield.

org) with the following important differences. First, our repository is blind to who is sub-

mitting the bot report and the system will deliver alerts viaTLS over TOR, preventing an

association of bot reports to a site via passive sniffing. Second, our anonymization strategy

obfuscates all local IP addresses and time intervals in the profile database but preserves

C&C, egg download, and attacker addresses that do not match user defined address prox-

imity mask. Users can enable further field anonymizations asthey require. We intend to

use contributed bot profiles to learn specific alert signature patterns for specific bots, to

track attackers, and to identify C&C sites.

3.6 Summary

We have presented the design and implementation of BotHunter, a network perimeter mon-

itoring system for the real-time detection of Internet malware infections. The cornerstone

of the BotHunter system is a multi-sensor dialog correlation engine that performs alert

consolidation and evidence trail gathering for the investigation of putative infections. We

evaluated the system’s detection capabilities in anin situ virtual network and a live hon-

eynet demonstrating that the system is capable of accurately flagging both well-studied and

emergent bots. We also validated low false positive rates byrunning the system live in two

operational production networks. Our experience demonstrates that the system is highly

scalable and reliable (very low false positive rates) even with not-so-reliable (weak) raw

10In the first five months after its public release, BotHunter has already more than 6,000 downloads.
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detectors. BotHunter is also thefirst example of a widely distributed bot infection profile

analysis tool. We hope that our Internet release will enablethe community to extend and

maintain this capability while inspiring new research directions.
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CHAPTER IV

BOTSNIFFER: SPATIAL-TEMPORAL CORRELATION-BASED

BOTNET DETECTION

We have described our first detection system, BotHunter. It can detect bots that follow an

infection model consisting of several infection stages, and it can potentially issue alerts in

the early phase of bot infections before bots are fully controlled to perform further ma-

licious activities. However, BotHunter also has some limitations. It is restricted to the

predefinedinfection model. In addition, at some stages such as C&C communication, it

currently provides only signature-based sensors. In this chapter, we present a new botnet

detection system, BotSniffer. This new system does not necessarily require the observation

of multiple differentstages on an individual host, and it does not require botnet-specific

signatures.

New Approach: We focus on a new perspective, i.e., horizontal correlationacross

multiple machines. In particular, since we focus on a specific horizontal correlation that

considers both spatial locality (groups of machines) and temporal synchronization (multiple

rounds of similar behavior), we refer to this correlation strategy asspatial-temporalcorre-

lation in the remainder of the chapter. We observe that the bots within a botnet demonstrate

spatial-temporal correlations and similarities due to thenature of their pre-programmed

response activities to control commands. This invariant helps us identify C&C within net-

work traffic. For instance, at a similar time, the bots withina botnet will execute the same

command (e.g., obtain system information, scan the network) and report the progress/result

of the task to the C&C server (These reports are likely to be similar in structure and con-

tent.) Normal network activities are unlikely to demonstrate suchsynchronizedor corre-

latedbehavior. Using a sequential hypothesis testing algorithm, when we observe multiple

63



instances of correlated and similar behavior, we can conclude that a botnet is detected with

a high probability.

New System: We develop the BotSniffer system to detect mainlycentralizedbotnet

C&C channels based on spatial-temporal correlation and using network anomaly detec-

tion techniques. In particular, we focus on the two commonlyused botnet C&C mech-

anisms, namely, IRC- and HTTP-based C&C channels. For P2P botnet detection (e.g.,

Nugache [64] and Peacomm [44]), we leave this task to BotMiner, another new system

we will describe in the next chapter. BotSniffer monitors two kinds of possible botnet re-

sponses, i.e., message response (e.g., IRCPRIVMSG message) and activity response (e.g.,

scan, spam, binary downloading). When there are a group of machines that both share

a common IRC or HTTP server connection and demonstrate multiple instances of similar

response behavior, it is likely to be a botnet. BotSniffer uses a statistical technique (sequen-

tial probability ratio testing) and designs two algorithms(Response-Crowd-Density-Check

andResponse-Crow-Homogeneity-Check) for spatial-temporal correlation analysis to de-

tect botnets within a bounded (pre-defined) false positive/negative rate.

Contributions:

• We study two typical styles of control used in centralized botnet C&C. The first is the

“push” style, in which commands are pushed or sent to bots. Anexample of the push

style is IRC-based C&C channels. The second is the “pull” style, in which commands

are pulled or downloaded by bots. An example of the pull styleis HTTP-based C&C

channels. Observing the spatial-temporal correlation andsimilarity nature of these

botnet C&Cs, we provide a set of heuristics that distinguishC&C traffic from normal

traffic.

• We propose anomaly-based detection algorithms that identify both IRC- and HTTP-

based C&Cs in a port-independent manner. Our algorithms include the following

advantages: (1) They do not require prior knowledge of C&C servers or content

signatures; (2) They are able to detect encrypted C&C; (3) They do not require a
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large number of bots to be present in the monitored network, and may even be able

to detect a botnet with just a single member in the monitored network in some cases;

(4) They have bounded false positive and false negative rates.

• We develop theBotSnifferprototype system based on our proposed anomaly detec-

tion algorithms. We have evaluated BotSniffer using real-world network traces. The

results show that it has high accuracy in detecting real-world botnets using IRC- and

HTTP-based C&Cs with a very low false positive rate.

Chapter Organization: In Section 4.1, we provide a background on botnet C&C and

the motivation of our botnet detection approach. In Section4.2, we present the architecture

of BotSniffer and describe its detection algorithms in detail. In Section 4.3, we report our

evaluation of BotSniffer on various datasets. In Section 4.4, we discuss possible evasions

to BotSniffer, the potential corresponding solutions, andfuture improvement work. We

summarize in Section 4.5.

4.1 Botnet C&C and Spatial-Temporal Correlation

Botnets are different from other forms of malware such as worms in that they use command

and control (C&C) channels. It is important to study this botnet characteristic so as to

develop effective countermeasures. First, a botnet C&C channel is relatively stable and

unlikely to change among bots and their variants. Second, itis the essential mechanism

that allows a “botmaster” (who controls the botnet) to direct the actions of bots in a botnet.

As such, the C&C channel can be considered the weakest link ofa botnet. That is, if

we can take down an active C&C or simply interrupt the communication to the C&C,

the botmaster will not be able to control his botnet. Moreover, the detection of the C&C

channel will reveal both the C&C servers and the bots in a monitored network. Therefore,

understanding and detecting the C&C has great value in the battle against botnets.

In this section, we first use case studies to provide a background on two detailed botnet

C&C mechanisms, then discuss the invariants of botnet C&C that motivate our detection
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algorithms.

4.1.1 Case Study of Botnet C&C

As shown in Figure 13(a), centralized C&C architecture can be categorized into “push” or

“pull” style, depending on how a botmaster’s commands reachthe bots.

(a) Two styles of botnet C&C. (b) An IRC-based C&C communication exam-
ple.

Figure 13: Centralized botnet command and control: two representative styles and an
IRC-based example.

In a push style C&C, the bots are connected to the C&C server (e.g., an IRC server),

and wait for commands from the botmaster. The botmaster issues a command in the chan-

nel, and all the bots connected to the channel can receive it in real-time. That is, in a push

style C&C the botmaster has real-time control over the botnet. IRC-based C&C is the

representative example of push style. Many existing botnets use IRC, including the most

common bot families such as Phatbot, Spybot, Sdbot, Rbot/Rxbot, GTBot [16]. A botmas-

ter sets up an (or a set of) IRC server(s) as C&C hosts. After a bot is newly infected, it

will connect to the C&C server, join a certain IRC channel andwait for commands from

the botmaster. Commands will be sent in IRCPRIVMSG messages (like a regular chatting

message) or aTOPIC message. The bots receive commands, understand what the bot-

master wants them to do, and execute and then reply with the results. Figure 13(b) shows
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a sample command and control session. The botmaster first authenticates himself using

a username/password. Once the password is accepted, he can issue commands to obtain

some information from the bot. For example, “.bot.about” gets some basic bot infor-

mation such as version, “.sysinfo” obtains the system information of the bot-infected

machine, and “.scan.start” instructs the bots to begin scanning for other vulnerable

machines. The bots respond to the commands in pre-programmed fashions. The botmaster

has a rich command library to use [16], which enables the botmaster to fully control and

utilize the infected machines.

In a pull style C&C, the botmaster simply sets the command in afile at a C&C server

(e.g., an HTTP server). The bots frequently connect back to read the command file. This

style of command and control is relatively loose in that the botmaster typically does not

have real-time control over the bots because there is a delaybetween the time when he

“issues” a command and the time when a bot gets the command. There are several bot-

nets using HTTP protocol for C&C [23, 32, 53, 96]. For example, Bobax [96] is an early

HTTP bot designed mainly to send spams. The bots of this botnet periodically connect to

the C&C server with a URL such ashttp://hostname/reg?u=11111111&v=114,

and receive the command in an HTTP response. The command is inone of the six types,

e.g.,prj (send spams),scn (scan others),upd (update binary). Botnets can have fairly

frequent C&C traffic. For example, in a CERT report [53], researchers report a Web based

bot that queries for the command file every 5 seconds and then executes the commands.

Because of its proven effectiveness and efficiency, we expect that centralized C&C (e.g.,

using IRC or HTTP) will still be widely used by botnets in the near future.

4.1.2 Botnet C&C: Spatial-Temporal Correlation and Similarity

Botnet C&C traffic is known difficult to detect because: (1) itfollows normal protocol

usage and is similar to normal traffic, (2) the traffic volume is low, (3) there may be very

few bots in the monitored network, and (4) may contain encrypted communication.
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However, we identify several invariants in botnet C&C regardless of the push or pull

style. We explain these invariants as follows, which provide the intuition for our detection

solution.

First, bots need to connect to C&C servers in order to obtain commands. They may

either keep a long connection or frequently connect back. Ineither case, we can consider

that there is a (virtually) long-lived session of C&C channel.1

Second, bots need to perform certain tasks and respond to thereceived commands. We

can define two types of responses observable in network traffic, namely,messageresponse

andactivity response. A typical example of message response is IRC-based PRIVMSG

reply as shown in Figure 13(b). When a bot receives a command,it will execute and

reply in the same IRC channel with the execution result (or status/progress). The activity

responses are the network activities the bots exhibit when they perform the malicious tasks

(e.g., scanning, spamming, or binary update) as directed bythe botmaster’s commands.

According to [126], about 53% of botnet commands observed inthousands of real-world

IRC-based botnets are related to scan (for spreading or DDoS), about 14.4% are related to

binary download (for malware updating). Also, many HTTP-based botnets are mainly used

to send spam [96]. Thus, we will observe these malicious activity responses with a high

probability [24].

If there are multiple bots in the channel to respond to a command, most of them are

likely to respond in a similar fashion. For example, the botssend similar messages or

activity traffic at a similar time window, e.g., sending spamas in [83]. Thus, we can observe

a response crowdof botnet members responding to a command, as shown in Figure14.

Such crowd-like behavior is consistent with all botnet C&C commands and throughout

the life-cycle of a botnet. On the other hand, for a normal network service (e.g., an IRC

chatting channel), it is unlikely that many clients consistently respond similarly and at a

1We consider a session live if the TCP connection is live, or within a certain time window, there is at least
one connection to the server.
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Figure 14: Spatial-temporal correlation and similarity in bot responses (message response
and activity response).

similar time. That is, the bots have much stronger (and more consistent) synchronization

and correlation in their responses than normal (human) users do.

Based on the above observation, our botnet C&C detection approach is aimed at recog-

nizing the spatial-temporal correlation and similaritiesin bot responses. When monitoring

network traffic, as the detection system observes multiple crowd-like behavior, it can de-

clare that the machines in the crowd are bots of a botnet when the accumulated degree

of synchronization/correlation (and hence the likelihoodof bot traffic) is above a given

threshold.

4.2 BotSniffer: Architecture and Algorithms

Figure 15 shows the architecture of BotSniffer. There are two main components, i.e., the

monitor engine and the correlation engine. The monitor engine is deployed at the perime-

ter of a monitored network. It examines network traffic, generates connection record of

suspicious C&C protocols, and detects activity response behavior (e.g., scanning, spam-

ming, and binary downloading) and message response behavior (e.g., IRCPRIVMSG) in

the monitored network. The events observed by the monitor engine are analyzed by the

correlation engine. It performsgroup analysisof spatial-temporal correlation and similar-

ity of activity or message response behavior of the clients that connect to the same IRC
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or HTTP server. We implemented the monitor engines as several preprocessor plug-ins on

top of the open-source system Snort [86], and implemented the correlation engine in Java.

We also implemented a real-timemessage responsecorrelation engine (in C), which can

be integrated in the monitor engine. The monitor engines canbe distributed on several net-

works, and collect information to a central repository to perform correlation analysis. We

describe each BotSniffer component in the following sections.

4.2.1 Monitor Engine

4.2.1.1 Preprocessing

When network traffic enters the BotSniffer monitor engine, BotSniffer first performs pre-

processing to filter out irrelevant traffic to reduce the traffic volume. Preprocessing isnot

essential to the detection accuracy of BotSniffer but can improve the efficiency of BotSnif-

fer.

For C&C-like protocol matching, protocols that are unlikely (or at least not yet) used for

C&C communications, such as ICMP and UDP, are filtered. We canuse a (hard) whitelist

to filter out traffic to normal servers (e.g.,Google andYahoo!) that are less likely to
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serve as botnet C&C servers. A soft whitelist is generated for those addresses declared

“normal” in the analysis stage, i.e., those clearly declared “not botnet”. The difference

from a hard list is that a soft list is dynamically generated,and a soft white address is valid

only for a certain time window, after which it will be removedfrom the list.

For activity response detection, BotSniffer can monitor all local hosts or a “watch list”

of local clients that are using C&C-like protocols. The watch list is dynamically updated

from protocol matchers. The watch list is not required, but if one is available it can improve

the efficiency of BotSniffer because its activity response detection component only needs

to monitor the network behavior of the local clients on the list.

4.2.1.2 C&C-like Protocol Matcher

We need to keep a record on the clients that are using C&C-likeprotocols for correla-

tion purpose. Currently, we focus on two most commonly used protocols in botnet C&C,

namely, IRC and HTTP. We developed port-independent protocol matchers to find all sus-

picious IRC and HTTP traffic. This port-independent property is important because many

botnet C&Cs may not use the regular ports. We discuss in Section 4.4 the possible exten-

sions.

IRC and HTTP connections are relatively simple to recognize. For example, an IRC

session begins with connection registration (defined in RFC1459) that usually has three

messages, i.e.,PASS, NICK, andUSER. We can easily recognize an IRC connection using

light-weight payload inspection, e.g., only inspecting the first few bytes of the payload at

the beginning of a connection. This is similar to HiPPIE [5].HTTP protocol is even easier

to recognize because the first few bytes of an HTTP request have to be “GET,” “ POST,” or

“HEAD.”

4.2.1.3 Activity/Message Response Detection

For the clients that are involved in IRC or HTTP communications, BotSniffer monitors

their network activities for signs of bot response (messageresponse and activity response).
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For message response, BotSniffer monitors the IRCPRIVMSG messages for further corre-

lation analysis. For scan activity detection, BotSniffer uses approaches similar to SCADE

(Statistical sCan Anomaly Detection Engine) that we have developed for BotHunter [46].

Specifically, BotSniffer mainly uses two anomaly detectionmodules, namely, the abnor-

mally high scan rate and weighted failed connection rate. BotSniffer uses a new detector for

spam behavior detection, focusing on detectingMX DNS query (looking for mail servers)

and SMTP connections (because normal clients are unlikely to act as SMTP servers). We

note that more malicious activity response behavior can be defined and utilized in BotSnif-

fer. For example, binary downloading behavior can be detected using the similar approach

as PEHunter [118] and the egg detection method in BotHunter [46].

4.2.2 Correlation Engine

In the correlation stage, BotSniffer first groups the clients according to their destination IP

and port pair. That is, clients that connect to the same server will be put into the same group.

BotSniffer then performs agroup analysisof spatial-temporal correlation and similarity. If

BotSniffer detects any suspicious C&C, it will issue botnetalerts. In the current implemen-

tation, BotSniffer uses theResponse-Crowd-Density-Checkalgorithm (discussed in Section

4.2.2.1) forgroup activity responseanalysis, and theResponse-Crowd-Homogeneity-Check

algorithm (discussed in Section 4.2.2.2) forgroup message responseanalysis. Any alarm

from either of these two algorithms will trigger a botnet alert/report.

BotSniffer also has the ability to detect botnet C&C even when there is only one bot

in the monitored network, if certain conditions are satisfied. This is discussed in Section

4.2.3.
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4.2.2.1 Response-Crowd-Density-Check Algorithm

The intuition behind this basic algorithm is as follows. Foreach time window, we check

if there is adenseresponse crowd.2 Recall that a group is a set of clients that connect

to the same server. Within this group, we look for any messageor activity response be-

havior. If the fraction of clients with message/activity behavior within the group is larger

than a threshold (e.g., 50%), then we say these responding clients form adenseresponse

crowd. We use a binary random variableYi to denote whether theith response crowd is

dense or not. Let us denoteH1 as the hypothesis “botnet,”H0 as “not botnet.” We define

P r(Yi |H1) = θ1 andP r(Yi |H0) = θ0, i.e., the probability of theith observed response

crowd is dense when the hypothesis “botnet” is true and false, respectively. Clearly, for a

botnet, the probability of a dense crowd (θ1) is high because bots are more synchronized

than humans. On the other hand, for a normal (non-botnet) case, this probability (θ0) is

really low. If we observe multiple response crowds, we can have a high confidence that the

group is very likely part of a botnet or not part of a botnet.

The next question is how many response crowds are needed in order to make a final

decision. To reduce the number of crowds required, we utilize a SPRT (Sequential Prob-

ability Ratio Testing [108]) algorithm, which is also knownas TRW (Threshold Random

Walk [57]), to calculate a comprehensive anomaly score whenobserving a sequence of

crowds. TRW is a powerful tool in statistics and has been usedin port scan detection [57]

and spam laundering detection [121]. By using this technique, one can reach a decision

within a small number of rounds, and with a bounded false positive rate and false negative

rate.

TRW is essentially a hypothesis testing technique. That is,we want to calculate the

likelihood ratioΛn given a sequence of crowds observedY1, ..., Yn . Assume the crowds

Yi s’ are i.i.d. (independent and identically-distributed),we have

2We only check when there is at least one client (within the group) that has message/activity response
behavior.
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Λn = ln
P r(Y1, ..., Yn |H1)
P r(Y1, ..., Yn |H0)

= ln
∏

i P r(Yi |H1)∏
i P r(Yi |H0)

=
∑

i

ln
P r(Yi |H1)
P r(Yi |H0)

According to the TRW algorithm [57, 108], to calculate this likelihoodΛn , we are es-

sentially performing a threshold random walk. The walk starts from the origin (0), goes up

with step lengthln � 1
� 0

whenYi = 1, and goes down with step lengthln 1−� 1
1−� 0

whenYi = 0.

Let us denoteα andβ the user-chosen false positive rate and false negative rate, respec-

tively. If the random walk goes up and reaches the thresholdB = ln 1−�
� , this is likely a

botnet, and we accept the hypothesis “botnet,” output an alert, and stop. If it goes down

and hits the thresholdA = ln �
1−� , it is likely not a botnet. Otherwise, it is pending and we

just watch for the next round of crowd.

There are some possible problems that may affect the accuracy of this algorithm.

First, it requires observing multiple rounds of response crowds. If there are only a

few responses, the accuracy of the algorithm may suffer. In practice, we find that many

common commands will have a long lasting effect on the activities of bots. For example,

a single scan command will cause the bots to scan for a long time, and a spam-sending

“campaign” can last for a long time [24, 83]. Thus, at least for activity response detection,

we can expect to observe sufficient response behavior to havegood detection accuracy.

Second, sometimes not all bots in the group will respond within the similar time win-

dow, especially when there is a relatively loose C&C. One solution is simply to increase

the time window for each round of TRW. Section 4.2.2.2 presents an enhanced algorithm

that solves this problem.

To conclude, in practice, we find this basic algorithm works well, especially foractivity

response correlation. To further address the above possible limitations, we next propose an

enhanced algorithm.
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4.2.2.2 Response-Crowd-Homogeneity-Check Algorithm

The intuition of this algorithm is that, instead of looking at the density of a response crowd,

it is important to consider thehomogeneityof a crowd. Ahomogeneouscrowd means that

within a crowd, most of the members have very similar responses. For example, the mem-

bers of a homogeneous crowd have message responses with similar structure and content,

or they have scan activities with similar IP address distribution and port range. We note that

we currently implement this algorithm only formessage responseanalysis. Butactivity re-

sponseanalysis can also utilize this algorithm, as discussed in Section 4.4. In this section,

we usemessage responseanalysis as an example to describe the algorithm.

In this enhanced algorithm,Yi denotes whether theith crowd ishomogeneousor not.

We use a clustering technique to obtain the largest cluster of similar messages in the crowd,

and calculate the ratio of the size of the cluster over the size of the crowd. If this ratio is

greater than a certain threshold, we sayYi = 1; otherwiseYi = 0.

There are several ways to measure the similarity between twomessages (strings) for

clustering. For example, we can use edit distance (or ED, which is defined as the minimum

number of elementary edit operations needed to transform one string into another), longest

common subsequence, and DICE coefficient [21]. We require that the similarity metric

take into account the structure and context of messages. Thus, we choose DICE coefficient

(or DICE distance) [21] as our similarity function. DICE coefficient is based on n-gram

analysis, which uses a sliding window of lengthn to extract substrings from the entire

string. For a string X with lengthl, the number of n-grams is|ngrams(X)| = l − n + 1.

Dice coefficient is defined as the ratio of the number of n-grams that are shared by two

strings over the total number of n-grams in both strings:

Dice(X, Y ) =
2|ngrams(X) ∩ ngrams(Y )|
|ngrams(X)| + |ngrams(Y )|

We choosen = 2 in our system, i.e., we use bi-gram analysis. We also use a simple
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variant of hierarchical clustering technique. If there areq clients in the crowd,3 we compare

each of the
(q

2

)
unique pairs using DICE, and calculate the percentage of DICE distances

that are greater than a threshold (i.e., the percentage of similar messages). If this percent-

age is above a threshold (e.g., 20%), we say theith crowd is homogeneous, andYi = 1;

otherwise,Yi = 0.

Now we need to setθ1 and θ0. These probabilities should vary with the number of

clients (q) in the crowd. Thus, we denote themθ1(q) andθ0(q), or more generallyθ(q).

For example, for a homogeneous crowd with 100 clients sending similar messages, its

probability of being part of a botnet should be higher than that of a homogeneous crowd

of 10 clients. This is because with more clients, it is less likely that by chance they form

a homogeneous crowd. Let us denotep = θ(2) as the basic probability that two messages

are similar. Now we have a crowd ofq clients, there arem =
(q

2

)
distinct pairs, the

probability of havingi similar pairs follows the Binomial distribution, i.e.,P r(X = i) =
(m

i

)
pi (1−p)m−i . Then the probability of having more thank similar pairs isP r(X ≥ k) =

∑m
i =k

(m
i

)
pi (1 − p)m−i . If we pick k = mt wheret is the threshold to decide whether a

crowd is homogeneous, we obtain the probabilityθ(q) = P r(X ≥ mt).

As Figure 16 shows, when there are more than two messages in the crowd and we pick

p ≥ 0.6, the probabilityθ(q) is above the diagonal line, indicating that the value is larger

thanp. This suggests that when we useθ1(2) > 0.6, we haveθ1(q) > θ1(2). That is, if

there are more messages, we will more likely have a higher probability of θ1. This confirms

our intuition that, if it is a botnet, then having more clients (messages) is more likely to

form a clustered message group (homogeneous crowd). Also, from the figure, if we pick

a smallp ≤ 0.3, we will haveθ(q) < p. This suggests that when choosingθ0(2) < 0.3,

we will have much lower probabilityθ0(q) when having multiple messages. Again this

confirms the intuition that, for independent users (not a botnet), it is very unlikely for them

3Within a certain time window, if a client sends more than one message, the messages will be concatenated
together.
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Figure 16: θ(q), the probability of crowd homogeneity withq responding clients, and
thresholdt.

to send similar messages. If there are more users, then it is less unlikely they will form a

homogeneous crowd because essentially more users will involve more randomness in the

messages. In order to avoid calculatingθ(q) all the time, in practice one can pre-compute

these probabilities for differentq values and store the probabilities in a table for lookup. It

may be sufficient to calculate the probabilities for only a few q values (e.g.,q = 3, . . . , 10).

For q > 10, we can conservatively use the probability withq = 10.

For the hypothesis “not botnet,” for a pair of users, the probability of typing similar

messages is very low. To estimate how low this probability is, we first show the probability

of typing two similarlength(size) messages from two chatting users.

Let us use the common assumption of Poisson distribution forthe length of messages

typed by the user [34] at duration T,P (X = i) = e−� 1T (� 1T )i

i ! . Then for two independent

users, their joint distribution

P (X = i, Y = j) = P (x = i)P (y = j) = e−� 1T −� 2T (λ1T )i (λ1T )j

i!j!
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Figure 17: Probability of two independent users typing similar lengthof messages.

Figure 17 illustrates the probability of having two similarlength messages from two

different users at different settings ofλT , the average length of message a user types during

T . Figures 17(a) and (b) show the probabilities when two messages have length difference

within one character and two characters, respectively. In general, this probability will

decrease quickly if the difference betweenλ1 andλ2 increases. Even if two users have

the sameλ, the probability will also decrease (but slower than the previous case) with

the increase ofλ. Since two independent users are likely to have differentλ values, the

probability of typing similar length messages for them is low. For example, ifλ1T = 5
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andλ2T = 10, the probabilityP (|X − Y | <= 2) is only around0.24. If λ1T = 5 and

λ2T = 20, this probability will further decrease to0.0044.

Essentially, if the probability of having two similarlengthmessages is low, then the

probability of having two similarcontent is even much lower. In correlation analysis,

we pick a reasonably conservative value (e.g., 0.15) to estimate the probability of typing

similar messages. Even though this value is not precise, e.g., probably higher than the

actual value, the only effect is that the TRW algorithm takesa few more rounds to make a

decision [57,108].

In order to make a decision that a crowd is part of a botnet, theexpected number of

crowd message response rounds we need to observe is:

E[N |H1] =
β ln �

1−� + (1 − β) ln 1−�
�

θ1 ln � 1
� 0

+ (1 − θ1) ln 1−� 1
1−� 0

whereα andβ are user-chosen false positive and false negative probabilities, respectively.

Similarly, if the crowd is not part of a botnet, the expected number of crowd message

response rounds to make a decision is:

E[N |H0] =
(1 − α) ln �

1−� + α ln 1−�
�

θ0 ln � 1
� 0

+ (1 − θ0) ln 1−� 1
1−� 0

These numbers are derived according to [108].

Figure 18 illustrates the expected number of walks (E[N |H1]) (i.e., the number of

crowd response rounds need to observe) when the crowd is partof a botnet. Here we

fix β = 0.01 and varyθ0(2), θ1(2), andα. We can see that even when we have only

two clients, and have a conservative setting ofθ0(2) = 0.2 andθ0(2) = 0.7, it only takes

around 6 walks to reach the decision. When we increaseθ1(2) and decreaseθ0(2), we

can achieve better performance, i.e., fewer rounds of walks. If there are more than two

messages (clients), we can have shorter detection time thanthe case of having only two

messages. It is obvious that having more clients in the botnet means that we can make a

decision quicker. For example, whenq = 4, θ1(2) = 0.7, andθ0(2) < 0.15, the expected
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Figure 18: E[N |H1], the expected number of crowd rounds in case of a botnet (varyθ0(2),
q, α and fixβ = 0.01).

number of crowd rounds is less than two.

4.2.3 Single Client C&C Detection Under Certain Conditions

Group correlation analysis typically requires having multiple members in a group. In some

cases, there is only one client (e.g., the first infected victim) in the group. We recommend

a distributed deployment of BotSniffer (as discussed in Section 4.4) to cover a larger net-

work space, and thereby potentially have more clients in a group. Orthogonally, we can

use techniques that are effective even if there is only one member in the group, if certain

conditions are satisfied.

For IRC communication, a chatting message is usually broadcasted in the channel.

That is, every client can see the messages sent from other clients in the same channel

(which is the normal operation of IRC chatting service). Thus, every bot should expect to

receive the response messages from all other clients. This is essentially similar to the case

when we can monitor multiple message responses from multiple clients in the group. We

can use the same TRW algorithm here. The only difference is that, instead of estimating
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the homogeneity of the outgoing message responses from multiple clients, we estimate

the homogeneity of incoming messages (from different users) to a single client. We also

implemented BotSniffer to perform this analysis because itcomplements the algorithms

we described in Section 4.2.2.1 and Section 4.2.2.2, especially if there is only one client in

the monitored network. Of course, this will not work if the botmaster uses a modified IRC

softwares to disable broadcasting messages to every clients in the channel.

For HTTP-based C&C, we notice that bots have strong periodical visiting patterns (to

connect back and retrieve commands).Under this condition, we can include a new signal

encoding and autocorrelation (or self-correlation) approach in BotSniffer to detect such

kind of C&C. We describe this technique in the appendix of [48].

Finally, we note that although these two single client detection schemes work well

on existing botnet C&C, they are not as robust (evasion-resilient) as the group analysis

algorithms discussed in Section 4.2.2.1 and Section 4.2.2.2.

4.3 Experimental Evaluation

To evaluate the performance of BotSniffer, we tested it on several network traces.

4.3.1 Datasets

We have multiple network traces captured from our university campus network. Among

those, eight are just port 6667 IRC traffic captured in 2005, 2006, and 2007. Each IRC

trace lasts from several days to several months. The total duration of these traces is about

189 days. They were labeled as IRC-n (n =1, . . . , 8). The other five traces are complete

packet captures of all network traffic. Two of them were collected in 2004, each lasting

about ten minutes. The other three were captured in May and December 2007, each lasting

1 to 5 hours. We labeled them as All-n (n =1, . . . , 5). The primary purpose of using these

traces was to test the false positive rate of BotSniffer. We list the basic statistics (e.g., size,

duration, number of packets) of these traces in the left partof Table 6.
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Table 6: Normal traces statistics (left part) and detection results(right columns) in Bot-
Sniffer evaluation.

Trace trace size duration Pkt TCP flows (IRC/Web) servers FP
IRC-1 54MB 171h 189,421 10,530 2,957 0
IRC-2 14MB 433h 33,320 4,061 335 0
IRC-3 516MB 1,626h 2,073,587 4,577 563 6
IRC-4 620MB 673h 4,071,707 24,837 228 3
IRC-5 3MB 30h 19,190 24 17 0
IRC-6 155MB 168h 1,033,318 6,981 85 1
IRC-7 60MB 429h 393,185 717 209 0
IRC-8 707MB 1,010h 2,818,315 28,366 2,454 1
All-1 4.2GB 10m 4,706,803 14,475 1,625 0
All-2 6.2GB 10m 6,769,915 28,359 1,576 0
All-3 7.6GB 1h 16,523,826 331,706 1,717 0
All-4 15GB 1.4h 21,312,841 110,852 2,140 0
All-5 24.5GB 5h 43,625,604 406,112 2,601 0

We also obtained several real-world IRC-based botnet C&C traces from several differ-

ent sources. One was captured at Georgia Tech honeynet in June 2006. This trace contains

about eight hours of traffic (mainly IRC). We labeled it as B-IRC-G. The IRC channel has

broadcast on and we can observe the messages sent from other bots in the channel. The

trace does not contain the initial traffic, so we did not have the command. From the replies

of the clients, it seems like a DDoS attack because bots reported current bandwidth usage

and total offered traffic. Besides B-IRC-G, we also obtainedtwo botnetIRC logs (not net-

work traces) recorded by an IRC tracker in 2006 [82]. In theselogs, there are two distinct

IRC servers, so there are two different botnets. We labeled them as B-IRC-J-n (n = 1, 2). In

each log, the tracker joined the channel, and sat there watching the messages. Fortunately,

the botmaster here did not disable the broadcast, thus, all the messages sent by other bots

in the channel were observable.

In addition to these IRC botnet traces, we modified the sourcecodes of three common

bots [16] (Rbot, Spybot, Sdbot) and created our version of binaries (so that the bots would

only connect to our controlled IRC server). We set up a virtual network environment using

VMware and launched the modified bots in several Windows XP/2K virtual machines. We
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instructed the bots to connect our controlled C&C server andcaptured the traces in the

virtual network. For Rbot, we used five Windows XP virtual machines to generate the

trace. For Spybot and Sdbot, we used four clients. We labeledthese three traces as V-

Rbot, V-Spybot, and V-Sdbot, respectively. Most of these traces contain both bot message

responses and activity responses.

We also implemented two botnets with HTTP-based C&C communication according

to the description in [53, 96]. In the first botnet trace, B-HTTP-I, bots regularly connects

back to the C&C server every five minutes for commands. We ran four clients in the virtual

network to connect to an HTTP server that acted as a C&C serverproviding commands

such asscan andspam. The four clients are interleaved in time to connect to C&C, i.e.,

although they periodically connect, the exact time is different because they are infected

at different time. In the second trace, B-HTTP-II, we implemented a more stealthy C&C

communication. The bot waits a random amount of time for the next connection to the

C&C server. This may easily evade the simple autocorrelation-based approach on single

client analysis. We wanted to see how it would affect the detection performance of group

correlation analysis. These two traces contain bot activity responses.

Table 7 lists some basic statistics of these botnet traces inthe left part. Because B-IRC-

J-1/2 are not network traces, we report only the number of lines (packets) in the logs.

Table 7: Botnet traces statistics and detection results in BotSniffer evaluation.
BotTrace trace size duration Pkt TCP flow Detected
B-IRC-G 950k 8h 4,447 189 Yes
B-IRC-J-1 - - 143,431 - Yes
B-IRC-J-2 - - 262,878 - Yes
V-Rbot 26MB 1,267s 347,153 103,425 Yes
V-Spybot 15MB 1,931s 180,822 147,921 Yes
V-Sdbot 66KB 533s 474 14 Yes
B-HTTP-I 6MB 3.6h 65,695 237 Yes
B-HTTP-II 37MB 19h 395,990 790 Yes
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4.3.2 Experimental Results and Analysis

4.3.2.1 False Positives and Analysis

We first report our experience on the normal traces. We list our detection results in the

right part of Table 6. Basically, we list the number of TCP flows (other than TCP flows, we

did not count UDP or other flows) and distinct servers (only IRC/Web servers are counted)

in the traces. We show the number of IP addresses identified asbotnet C&C servers by

BotSniffer (i.e., the numbers of false positives) in the rightmost column. Since these traces

were collected from well administrated networks, we presumed that there should be no

botnet traffic in the traces. We manually verified the raw alerts generated by BotSniffer’s

monitor engine and also ran BotHunter [46] to confirm that these are clean traces.

The detection results on the IRC traces are very good. Since these traces only contain

IRC traffic, we only enabledmessage responsecorrelation analysis engine. On all eight

traces (around 189 days’ of IRC traffic), BotSniffer only generated a total of 11 FPs on

four of the IRC traces. We investigated these alerts and found them all real false positives.

There was no false positive (FP) resulted from group analysis. All were generated due

to single client incoming message response analysis (Section 4.2.3). The main reason of

causing false positives was that, there is still a small probability of receiving very similar

messages in a crowd from different users engaging in normal IRC activity. For example, we

noticed that in an IRC channel, several users (not in the monitored network) were sending

“@@@@@@@@...” messages at similar time (and the messages were broadcasted at the

channel). This resulted in several homogeneous message response crowds. Thus, our TRW

algorithm walked to the hypothesis of “botnet,” resulting aFP. While our TRW algorithm

cannot guaranteeno FP, it can provide a pretty good bound of FP. We setα = 0.005, β =

0.01 in our evaluation and our detection results confirmed the bounds are satisfied because

the false positive rate was 0.0016 (i.e., 11 out of 6,848 servers), which is less thanα =

0.005).

On the network traces All-n, we enabled bothactivity responseandmessage response
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group analysis engine, and we did not observe false positives. For All-1 and All-2, since the

duration is relatively short, we set the time window to one and two minutes, respectively.

None of them caused a false positive, because there were veryfew random scanning activ-

ities, which did not cause TRW to make a decision on “botnet.”For All-3, All-4 and All-5,

we set the time window to 5, 10, and 15 minutes, respectively.Again, we did not observe

any false positive. These results showed that our activity response correlation analysis is

relatively robust.

4.3.2.2 Detection Accuracy and Analysis

Next, we ran BotSniffer on the botnet traces in two modes, stand alone and mixed with

normal traces. It successfully detected all botnet C&C channels in the datasets. That is, it

has a detection rate of100% in our evaluation.

BotSniffer detected B-IRC-G using only message response crowd homogeneity evi-

dences because the trace did not contain activity responses. Since the bots kept sending

reports of the attack (which were similar in structure and content) to the C&C server, Bot-

Sniffer observed continuous homogeneous message responsecrowds.

On two IRC logs, we had to adapt our detection algorithms to take a text line as packet.

In trace B-IRC-J-1, there were a lot of bots sending similar response messages and these

were broadcasted in the IRC channel. BotSniffer easily detected the C&C channel. In trace

B-IRC-J-2, although the messages were less often, there were hundred of bots responded

almost at the same time, and thus, BotSniffer was able to detect the C&C channels.

On trace V-Rbot, BotSniffer reported botnet alerts becauseof the groupmessage re-

sponsehomogeneity detection andactivity response(scanning) density detection. Actually,

even only one client is monitored in the network, BotSniffercould still detect the botnet

C&C because in this case each client could observe messages from other clients in the same

botnets. Similarly, BtSniffer also successfully detectedC&C channels in traces V-Spybot

and V-Sdbot with message responses and/or activity responses.
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For traces B-HTTP-I and B-HTTP-II, BotSniffer detected allof the botnets according

to activity response group analysis. The randomization of connection periods did not cause

a problem as long as there were still several clients performing activity responses at the

time window.

4.3.2.3 Summary

In our experiments, BotSniffer successfully detected all botnets and generated very few

false positives. In addition, its correlation engine generated accurate and concise report

rather than producing alerts of malicious events (e.g., scanning, spamming) as a traditional

IDS does. For instance, in trace All-4, the monitor engine produced over 100 activity

events, none of which is the indication of actual botnets (e.g., they are false positives),

while the correlation engine did not generate a false positive. In another case, e.g., in V-

Spybot, there were over 800 scanning activity events produced by the monitor engine, and

the correlation engine only generated one botnet report (true positive), which was a great

reduction of work for administrators.

In terms of performance comparison with existing botnet detection systems, we can

mainly do a paper-and-pencil study here because we could notobtain these tools, except

BotHunter [46]. Rishi [43] is a relevant system but it is signature-based (using known

knowledge of bot nicknames). Thus, if IRC bots simply changetheir nickname pattern

(for example, many of botnets in our data do not have regular nickname patterns), Rishi

will miss them. However, such changes will not affect BotSniffer because it is based on

the response behavior. Another relevant work is the BBN system [66, 98]. Its detection

approach is based on clustering of some general network-level traffic features (such as du-

ration, bytes per packet). Such approach is easy to evade by simply changing the network

flows. It can potentially have more false positives because it does not consider the temporal

synchronization and correlation of responses. BotHunter [46] is a bot detection system us-

ing IDS-based dialog correlation according to a user-defined bot infection live-cycle model.
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It cannot detect bots given only IRC communication. Its current C&C detection module

relies on known signatures, and thus, it fails on some botnettraces (e.g., B-IRC-G, B-

HTTP-I). The anomaly-based IRC botnet detection system in [18] has the similar problem

as BotHunter. Without considering thegroup spatial-temporal correlation and similarity,

these systems may also have a higher false positive rate thanBotSniffer.

Although BotSniffer performed well in our evaluation, it can fail to detect botnets in

several cases. We next discuss these issues and the possiblesolutions, as well as future

work on improving BotSniffer.

4.4 Discussion

As we have stated, BotSniffer can still have false positivesif normal hosts happen to behav-

ior very similarly at a similar time, though this probability is very low. In the experiments,

we have shown such examples. There might be other examples, e.g., flash crowds. That is,

the same set of hosts visit the same website (e.g.,slashdot.org) and then download the

same binary (probably from other websites) at a similar time. If this occurs several rounds,

BotSniffer is likely to trigger an alert. However, we envision such cases to be rare and we

can use a white list to effectively reduce such false positives.

Next, we discuss more important issues related to false negatives.

4.4.1 Possible Evasions and Solutions

Evasion by misusing the whitelist: If a botmaster knows our hard whitelist, he may at-

tempt to misuse these white addresses. For example, he can use them as third-party proxies

for C&C purpose to bypass the detection of BotSniffer. However, as we discussed earlier,

a whitelist is not essential to BotSniffer and mainly servesto improve its efficiency. Thus,

whitelists can be removed to avoid such evasions. In anotherevasion case, an adversary

controlling the C&C server may attempt to first behave normally and trick BotSniffer to de-

cide that the C&C server is a normal server and put the server address in the soft whitelist.

After that, the adversary begins to use the C&C server to command the bots to perform real

87



malicious activities. To defeat this evasion, for each address being added to soft whitelist,

we can keep arandomand short timer so that the address will be removed when the timer

expires. Thus, the adversary’s evasion attempt will not succeed consistently.

Evasion by encryption: Botnets may still use known protocols (IRC and HTTP) that

BotSniffer can recognize, but the botmasters can encrypt the communication content to at-

tempt to evade detection. First of all, this mayonly misleadmessage responsecorrelation

analysis, butcannotevadeactivity responsecorrelation analysis. Second, we can improve

message responsecorrelation analysis to deal with encrypted traffic. For example, instead

of using simple DICE distance to calculate the similarity oftwo messages, we can use

information-theoretic metrics that are relatively resilient to encryption, such as entropy, or

normalized compression distance (NCD [14, 117]), which is based on Kolmogorov com-

plexity.

Evading protocol matcher: Although botnets tend to use existing common protocols

to build their C&C, they may use some obscure protocols or even create their own proto-

cols.4 It is worth noting that “push” and “pull” are the two representative C&C styles. Even

when botnets use other protocols, the spatial-temporal correlation and similarity properties

in “push” and “pull” will remain. Thus, our detection algorithms can still be used after

new protocol matchers are added. We can develop a generic C&C-like protocol matcher

that uses traffic features such as BPP (bytes per packet), BPS(bytes per second), and PPS

(packet per second) [66,98] instead of relying on protocol keywords. This protocol match-

ing approach is based on the observation that there are generic patterns in botnet C&C

traffic regardless of the protocol being used. For example, C&C traffic is typically low

volume with a just a few packets in a session and a few bytes in apacket. Ultimately, to

overcome the limitations of protocol matching and protocol-specific detection techniques,

4However, a brand new protocol itself is suspicious already.A botnet could also exploit the implementa-
tion vulnerability of protocol matchers. For example, if anIRC matcher only checks the first ten packets in
a connection to identify the existence of IRC keywords, the botmaster may have these keywords occur after
the first ten packets in order to evade this protocol matcher.
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we have developed a next-generation botnet detection system, BotMiner, which is indepen-

dent of the protocol and network structure used for botnet C&C, as will be described in the

next chapter.

Evasion by using very long response delay: A botmaster may command his bots

to wait for a very long time (e.g., days or weeks) before performing message or malicious

activity response. In order to detect such bots using BotSniffer, we have to correlate IRC

or HTTP connection records and activity events within a relatively long time window. In

practice, we can perform correlation analysis using multiple time windows (e.g., one hour,

one day, one week, etc.). However, we believe that if bots areforced to use avery long

response delay, the utility of the botnet to botmaster is reduced or limited because the

botmaster can no longer command his bots promptly and reliably. For example, the bot-

infected machines may be powered off or disconnected from the Internet by the human

users/owners during the delay and become unavailable to thebotmaster. We can also use the

analysis ofactivity response crowd homogeneity(see Section 4.4.2) to defeat this evasion.

For example, if we can observe over a relatively long time window that several clients are

sending spam messages withvery similarcontents, we may conclude that the clients are

part of a botnets.

Evasion by injecting random noise packet, injecting randomgarbage in the packet,

or using random response delay: Injecting random noise packet and/or random garbage

in a packet may affect the analysis ofmessageresponse crowd homogeneity. However,

it is unlikely to affect theactivity response crowd analysis as long as the bots still need

to perform the required tasks. Using random message/activity response delay may cause

problems to theResponse-Crowd-Density-Checkalgorithm because there may not be suffi-

cient number of responses seen within a time window for one round of TRW. However, the

botmaster may lose the reliability in controlling and coordinating the bots promptly if ran-

dom response delay is used. We can use a larger time window to capture more responses.

Similar to evasion by long response delay discussed above, for evasion by random response
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delay, a better solution is to use the analysis ofactivity response crowd homogeneity(see

Section 4.4.2).

In summary, although it is not perfect, BotSniffer greatly enhances and complements

the capabilities of existing botnet detection approaches.Further research is needed to im-

prove its effectiveness against the more advanced and evasive botnets.

4.4.2 Improvements to BotSniffer

Activity response crowd homogeneity check: We have already discussed homogene-

ity analysis ofmessage response crowdin Section 4.2.2.2. We can perform similar check

on the homogeneity ofactivity response crowd. For instance, for scanning activity, we

consider two scans to be similar if they have similar distribution or entropy of the target

IP addresses and similar ports. A similarity function of twospam activities can be based

on the number of common mail servers being used, the number ofspam messages being

sent, and the similarity of spam structure and content (e.g., the URLs in the messages).

A similarity function of two binary downloading activitiescan be based on the byte value

distribution or entropy of the binary or binary string distance. By includingResponse-

Crowd-Homogeneity-Checkon activity responses, in addition to the similar check on mes-

sage responses, we can improve the detection accuracy of BotSniffer and its resilience to

evasion.

Combine more features in analysis: As with other detection problems, including

more features can improve the accuracy of a botnet detectionalgorithm. For example,

we can check whether there are any user-initiated queries, e.g.,WHO, WHOIS, LIST, and

NAMES messages, in an IRC channel. The intuition is that a bot is unlikely to use these

commands like a real user. To detect an IRC channel that disables broadcast (as in the

more recent botnets), we can consider the message exchange ratio, defined asm i
mo

, i.e.,

the ratio between the number of incomingPRIVMSG messages (mi ) and the number of

outgoingPRIVMSG messages (mo). The intuition is that for a normal (broadcasting) IRC
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channel, most likely there are multiple users/clients in the chatting channel, and a user

usually receives more messages (from all other users) than he sends. On the other hand,

in the botnet case with broadcast disabled, the number of incoming messages can be close

to the number of outgoing messages because a client cannot see/receive the messages sent

by other clients. The number of incoming messages can also besmaller than the number

of outgoing messages, for example, when there are several packets/responses from a bot

corresponding to one botmaster command, or when the botmaster is not currently online

sending commands. In addition, we can consider other group similarity measures on traffic

features, e.g., duration, bytes per second, and packets persecond.

Distributed deployment on Internet: Ideally, BotSniffer deployment should be scal-

able, i.e., it should be able to handle a large volume of traffic and cover a large range of

network addresses. We envision that BotSniffer can be distributed in that many monitor

sensors can be deployed in distributed networks and report to a central repository that also

performs correlation and similarity analysis.

4.5 Summary

Botnet detection is a relatively new and a very challenging research area. In this chapter, we

presented BotSniffer, a network anomaly based botnet detection system that explores the

spatial-temporal correlation and similarity properties of botnet command and control activ-

ities. Our detection approach is based on the intuition thatsince bots of the same botnet run

the same bot program, they are likely to respond to the botmaster’s commands and conduct

attack/fraudulent activities in a similar fashion. BotSniffer employs several correlation and

similarity analysis algorithms to examine network traffic and identifies the crowd of hosts

that exhibit very strong synchronization/correlation in their responses/activities as bots of

the same botnet. We reported an experimental evaluation of BotSniffer on many real-world

network traces and showed that it has very promising detection accuracy with a very low

false positive rate.

91



CHAPTER V

BOTMINER: HORIZONTAL CORRELATION-BASED,

PROTOCOL- AND STRUCTURE-INDEPENDENT BOTNET

DETECTION

Botnets are evolving and quite flexible. We have witnessed that the protocols used for C&C

evolved from IRC to others (e.g., HTTP [23, 32, 53, 96]), and the structure moved from

centralized to distributed (e.g., P2P [44,64]). Furthermore, during its lifetime, a botnet can

also frequently change its C&C server address, e.g., using fast-flux service networks [51].

Previously, we have described BotHunter and BotSniffer. BotHunter [46] is capable

of detecting bots regardless of the C&C structure and network protocol as long as the

bot behavior follows apre-definedinfection life-cycle dialog model. However, it may

fail as soon as botnets change their infection model(s). BotSniffer is designed mainly for

detecting botnets usingcentralizedC&C protocols such as IRC or HTTP. Similarly, many

other existing approaches such as [18,43,59,66,98,124] are restricted to detecting botnets

usingcentralizedC&C, and mostly only for IRC-based botnets. Thus, the aforementioned

detection approaches may become ineffective against botnets once they evolve their C&C

techniques.

In this chapter, we introduce a new detection system, BotMiner, which is based on a

concept of horizontal correlation similar to that of BotSniffer to detecta groupof com-

promised machines inside the monitored network that are part of a botnet. However, we

propose a more general technique framework that can detect both centralized andP2Pbot-

nets.

Revisit the Definition of Botnet: To design a general detection approach that can

resist the evolution and changes in botnet C&C techniques, we need to study theintrinsic
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botnet communication and activity characteristics that remain detectable with the proper

detection features and algorithms. We thereby revisit the definition of a botnet, i.e., “aco-

ordinated groupof malwareinstances (bots) that arecontrolledby a botmaster via some

command and control (C&C) channel.” The term “malware” means these bots are used to

performmalicious activities. For example, according to [126], about 53% of botnet activity

commands observed in thousands of real-world IRC-based botnets are related to scan (for

the purpose of spreading or DDoS),1 and about 14.4% are related to binary downloading

(for the purpose of malware updating). In addition, most of HTTP-based and P2P-based

botnets are used to send spam [44, 96]. The term “controlled”means these bots have to

contact their C&C servers to obtain commands to carry out activities, e.g., to scan. In other

words, there should becommunication between bots and C&C servers/peers(which can

be centralized or distributed). Finally, the term “coordinated group” means that multiple

(at least two) bots within the same botnet will performsimilar or correlatedC&C commu-

nications and malicious activities. If the botmaster commands each bot individually with

a different command/channel, the bots are nothing but some isolated/unrelated infections.

That is, they do not function as a botnetaccording to our definition and are out of the scope

of this work.2

New Approach and System: We develop the BotMiner detection system based on

the above essential properties of botnets. BotMiner monitors bothwho is talking to whom

that may suggest C&C communication activities andwho is doing whatthat may suggest

malicious activities, and finds acoordinated group patternin both kinds of activities. More

specifically, BotMiner clusters similar communication activities in theC-plane(C&C com-

munication traffic), clusters similar malicious activities in theA-plane(activity traffic), and

1For spreading, the scans usually span many different hosts (within a subnet) indicated by the botnet
command. For DDoS, usually there are numerous connection attempts to a specific host. In both cases, the
traffic can be considered as scanning related.

2One can use our complementary systems such as BotHunter to detect individualbots.
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performs cross-cluster correlation to identify the hosts that share both similar communica-

tion patternsandsimilar malicious activity patterns. These hosts, according to the botnet

definition and properties discussed above, are bots in the monitored network.

Contributions:

• We develop a novel, general, horizontal correlation-basedbotnet detection frame-

work that is grounded on the definition and essential properties of botnets. Our de-

tection framework is independent of botnet C&C protocol andstructure, resistant to

changes in the location of the C&C server(s), and requires noa priori knowledge

(e.g., C&C addresses/signatures) of specific botnets. It can detect both centralized

(e.g., IRC,HTTP) and current (and possibly future) P2P-based botnets.

• We define a new “aggregated communication flow” (C-flow) record data structure to

store aggregated traffic statistics, and design a new layered clustering scheme with

a set of traffic features measured on the C-flow records. Our clustering scheme can

accurately and efficiently group similar C&C traffic patterns. The technique is also

independent of the content of the C&C communication. That is, we do not inspect

the content of the C&C communication, because C&C could be encrypted or use a

customized (obscure) protocol.

• We build the BotMiner prototype system based on our general detection framework,

and evaluate it with multiple real-world network traces including normal traffic and

several real-world botnet traces that contain IRC-, HTTP- and P2P-based botnet traf-

fic (including Nugache and Storm). The results show that BotMiner has a high de-

tection rate and a low false positive rate.

Chapter Organization: In Section 5.1, we describe the problem statement and as-

sumptions of BotMiner. In Section 5.2, we describe the architecture, detection algorithms

and implementation. In Section 5.3, we describe our evaluation on various real-world net-

work traces. In Section 5.4, we discuss current limitationsand possible solutions. We
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conclude the chapter in Section 5.5.

5.1 Problem Statement and Assumptions

In order for a botmaster to command a botnet, there needs to bea C&C channel through

which bots receive commands and coordinate attacks and fraudulent activities. The C&C

channel is the means by which individual bots form a botnet. Centralized C&C structures

using the Internet Relay Chat (IRC) protocol have been utilized by botmasters for a long

time. In this architecture, each bot logs into an IRC channel, and seeks commands from

the botmaster. Even today, many botnets are still designed this way. Quite a few botnets,

though, have begun to use other protocols such as HTTP [23,32,53,96], probably because

HTTP-based C&C communications are more stealthy given thatWeb traffic is generally

allowed in most networks. Although centralized C&C structures are effective, they suffer

from the single-point-of-failure problem. For example, ifthe IRC channel (or the Web

server) is taken down due to detection and response efforts,the botnet loses its C&C struc-

ture and becomes a collection of isolated compromised machines. Recently, botmasters

began using peer-to-peer (P2P) communication to avoid thisweakness. For example, Nu-

gache [64] and Storm worm [44,52] (a.k.a. Peacomm) are two representative P2P botnets.

Storm, in particular, distinguishes itself as having infected a large number of computers on

the Internet and effectively becoming one of the “world’s top super-computers” [61] for the

botmasters.

Figure 19 illustrates the two typical botnet structures, namely centralizedand P2P.

The bots receive commands from the botmaster using apushor pull mechanism [48] and

execute the assigned tasks.

The operation of a centralized botnet is relatively easy andintuitive [48], whereas this

is not necessarily true for P2P botnets. Therefore, here we briefly illustrate an example of

a typical P2P-based botnet, namely Storm worm [44, 52]. In order to issue commands to

the bots, the botmaster publishes/shares command files overthe P2P network, along with
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Figure 19: Possible C&C structures of a botnet: (a) centralized; (b) peer-to-peer.

specific search keys that can be used by the bots to find the published command files. Storm

bots utilize a pull mechanism to receive the commands. Specifically, each bot frequently

contacts its neighbor peers searching for specific keys in order to locate the related com-

mand files. In addition to search operations, the bots also frequently communicate with

their peers and sendkeep-alivemessages.

According to the botnet definition given before, a botnet is characterized by both a

C&C communication channel (from which the botmaster’s commands are received) and

malicious activities (when commands are executed). Some other forms of malware (e.g.,

worms) may perform malicious activities, but they do not connect to a C&C channel. On

the other hand, some normal applications (e.g., IRC clientsand normal P2P file sharing

software) may show communication patterns similar to a botnet’s C&C channel, but they

do not perform malicious activities.

In both centralized and P2P structures, bots within the samebotnet are likely to behave

similarly in terms of communication patterns. This is largely due to the fact that bots are

non-human driven, pre-programmed to perform the same routine C&C logic/communication

as coordinated by the same botmaster. In the centralized structure, even if the address of

the C&C server may change frequently (e.g., by frequently changing theA record of a Dy-

namic DNS domain name), the C&C communication patterns remain unchanged. In the

case of P2P-based botnets, the peer communications (e.g., to search for commands or to
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sendkeep-alivemessages) follow a similar pattern for all the bots in the botnet, although

each bot may have a different set of neighbor peers and may communicate on different

ports.

Regardless of the specific structure of the botnet (centralized or P2P), members of the

same botnet (i.e., the bots) are coordinated through the C&Cchannel. In general, a botnet

is different from a set ofisolated individual malware instances, in which each different

instance is used for a totally different purpose. Although in an extreme case a botnet can

be configured to degenerate into a group ofisolated hosts, this is not the common case.

In this work, we focus on the most typical and useful situation in which bots in the same

botnetperform similar/coordinated activities. To the best of ourknowledge, this holds true

for most of the existing botnets observed in the wild.

To summarize, we assume that bots within the same botnet willbe characterized by sim-

ilar malicious activities, as well as similar C&C communication patterns. Our assumption

holds even in the case when the botmaster chooses to divide a botnet intosub-botnets, for

example by assigning different tasks to different sets of bots. In this case, each sub-botnet

will be characterized by similar malicious activities and C&C communications patterns,

and our goal is to detect each sub-botnet. In Section 5.4 we provide a detailed discussion

on possibleevasivebotnets that may violate our assumptions.

5.2 BotMiner: Architecture, Design and Implementation

5.2.1 BotMiner Architecture

Figure 20 shows the architecture of our BotMiner detection system, which consists of five

main components: C-plane monitor, A-plane monitor, C-plane clustering module, A-plane

clustering module, and cross-plane correlator.

The two traffic monitors in C-plane and A-plane can be deployed at the edge of the net-

work examining traffic between internal and external networks, similar to BotHunter [46]
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Figure 20: Architecture overview of our BotMiner detection framework.

and BotSniffer [48].3 They run in parallel and monitor the network traffic. The C-plane

monitor is responsible for logging network flows in a format suitable for efficient storage

and further analysis, and the A-plane monitor is responsible for detecting suspicious activ-

ities (e.g., scanning, spamming, and exploit attempts). The C-plane clustering and A-plane

clustering components process the logs generated by the C-plane and A-plane monitors,

respectively. Both modules extract a number of features from the raw logs and apply clus-

tering algorithms in order to find groups of machines that show very similar communication

(in the C-plane) and activity (in the A-plane) patterns. Finally, the cross-plane correlator

combines the results of the C-plane and A-plane clustering and makes a final decision on

which machines are possibly members of a botnet. In an ideal situation, the traffic mon-

itors should be distributed on the Internet, and the monitorlogs are reported to a central

repository for clustering and cross-plane analysis.

In our current prototype system, traffic monitors are implemented in C for the purpose

of efficiency (working on real-time network traffic). The clustering and correlation anal-

ysis components are implemented mainly in Java and R (http://www.r-project.

org/), and they work offline on logs generated from the monitors.

3All these tools can also be deployed in LANs.
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The following sections present the details of the design andimplementation of each

component of the detection framework.

5.2.2 Traffic Monitors

C-plane Monitor. The C-plane monitor captures network flows and records information

on who is talking to whom. Many network routers support the logging of network flows,

e.g., Cisco (www.cisco.com) and Juniper (www.juniper.net) routers. Open source

solutions like Argus (Audit Record Generation and Utilization System,http://www.

qosient.com/argus) are also available. We adapted an efficient network flow capture

tool developed at our research lab, i.e.,fcapture,4 which is based on the Judy library

(http://judy.sourceforge.net/). Currently, we limit our interest to TCP and

UDP flows. Each flow record contains the following information: time, duration, source IP,

source port, destination IP, destination port, and the number of packets and bytes transfered

in both directions. The main advantage of our tool is that it works very efficiently on high

speed networks (very low packet loss ratio on a network with 300Mbps traffic), and can

generate very compact flow records that comply with the requirement for further processing

by the C-plain clustering module. As a comparison, our flow capturing tool generates

compressed records ranging from 200MB to 1GB per day from thetraffic in our academic

network, whereas Argus generates around 36GB of compressedbinary flow records per

day on average (without recording any payload information). Our tool makes the storage

of several weeks or even months of flow data feasible.

A-plane Monitor. The A-plane monitor logs information onwho is doing what. It ana-

lyzes the outbound traffic through the monitored network andis capable of detecting several

malicious activities that the internal hosts may perform. For example, the A-plane monitor

is able to detect scanning activities (which may be used for malware propagation or DoS

4This tool will be released in open source soon.
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attacks), spamming, binary downloading (possibly used formalware update), and exploit

attempts (used for malware propagation or targeted attacks). These are the most common

and “useful” activities a botmaster may command his bots to perform [24,84,126].

Our A-plane monitor is built based on Snort [86], an open-source intrusion detection

tool, for the purpose of convenience. We adapted existing intrusion detection techniques

and implemented them as Snort preprocessor plug-ins or signatures. For scan detection we

adapted SCADE (Statistical sCan Anomaly Detection Engine), which is a part of BotH-

unter [46] and available at [27]. Specifically, we mainly usetwo anomaly detection mod-

ules: theabnormally-high scan rateand weightedfailed connection rate. We use anOR

combination rule, so that an event detected by either of the two modules will trigger an

alert. In order to detect spam-related activities, we used asimilar plug-in developed in Bot-

Sniffer [48]. We focused on detecting anomalous amounts of DNS queries forMX records

from the same source IP and the amount of SMTP connections initiated by the same source

to mail servers outside the monitored network. Normal clients are unlikely to act as SMTP

servers and therefore should rely on the internal SMTP server for sending emails. Use of

many distinct external SMTP servers for many times by the same internal host is an indica-

tion of possible malicious activities. For the detection ofPE (Portable Executable) binary

downloading we used an approach similar to PEHunter [118] and BotHunter’s egg down-

load detection method [46]. One can also use specific exploitrules in BotHunter to detect

internal hosts that attempt to exploit external machines. Other state-of-the-art detection

techniques can be easily added to our A-plane monitoring to expand its ability to detect

typical botnet-related malicious activities.

It is important to note that A-plane monitoring alone is not sufficient for botnet detection

purpose. First of all, these A-plane activities are not exclusively used in botnets. Second,

because of our relatively loose design of A-plane monitor (for example, we will generate

a log whenever there is a PE binary downloading in the networkregardless of whether the

binary is malicious or not), relying on only the logs from these activities will generate a lot
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of false positives. This is why we need to further perform A-plane clustering analysis as

discussed shortly in Section 5.2.4.

5.2.3 C-plane Clustering

C-plane clustering is responsible for reading the logs generated by the C-plane monitor and

finding clusters of machines that share similar communication patterns. Figure 21 shows

the architecture of the C-plane clustering.
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Figure 21: C-plane clustering.

First of all, we filter out irrelevant (or uninteresting) traffic flows. This is done in two

steps: basic-filtering and white-listing. It is worth noting that these two steps are not critical

for the proper functioning of the C-plane clustering module. Nonetheless, they are useful

for reducing the traffic workload and making the actual clustering process more efficient. In

the basic-filtering step, we filter out all the flows that are not directed from internal hosts to

external hosts. Therefore, we ignore the flows related to communications between internal

hosts5 and flows initiated from external hosts towards internal hosts (filter rule 1, denoted

asF1). We also filter out flows that are not completely established(filter rule 2, denoted

asF2), i.e., those flows that only contain one-way traffic. These flows are mainly caused

by scanning activity (e.g., when a host sends SYN packets without completing the TCP

hand-shake). In white-list filtering, we filter out those flows whose destinations are well

known as legitimate servers (e.g.,Google, Yahoo!) that will unlikely host botnet C&C

servers. This filter rule is denoted asF3. In our current evaluation, the white list is based

5If the C-plane monitor is deployed at the edge router, these traffic will not be seen. However, if the
monitor is deployed/tested in a LAN, then this filtering can be used.
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on the US top 100 and global top 100 most popular websites fromAlexa.com.

After basic-filtering and white-listing, we further reducethe traffic workload by ag-

gregating related flows into communication flows (C-flows) asfollows. Given an epochE

(typically several hours), allm TCP/UDP flows that share the same protocol (TCP or UDP),

source IP, destination IP and port, are aggregated into the same C-flowci = {fj }j =1::m ,

where eachfj is a single TCP/UDP flow. Basically, the set{ci }i =1::n of all then C-flows

observed duringE tells us “who was talking to whom,” during that epoch.

5.2.3.1 Vector Representation of C-flows

The objective of C-plane clustering is to group hosts that share similar communication

flows. This can be accomplished by clustering the C-flows. In order to apply clustering

algorithms to C-flows we first need to translate them in a suitable vector representation.

We extract a number of statistical features from each C-flowci , and translate them into

d-dimensional pattern vectors~pi ∈ Rd. We can describe this task as a projection function

F : C-plane→ Rd. The projection functionF is defined as follows. Given a C-flowci , we

compute the discrete sample distribution of (currently) four random variables:

1. the number of flows per hour (fph). fph is computed by counting the number of

TCP/IP flows inci that are present for each hour of the epochE.

2. the number of packets per flow (ppf). ppf is computed by summing the total number

of packets sent within each TCP/UDP flow inci .

3. the average number of bytes per packets (bpp). For each TCP/UDP flowfj ∈ ci we

divide the overall number of bytes transfered withinfj by the number of packets sent

within fj .

4. the average number of bytes per second (bps). bpsis computed as the total number

of bytes transfered within eachfj ∈ ci divided by the duration offj .
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An example of the results of this process is shown in Figure 22, where we select a random

client from a real network flow log (we consider a one-day epoch) and illustrate the features

extracted from its visits toGoogle.
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Figure 22: Visit pattern (shown in distribution) toGoogle from a randomly chosen nor-
mal client.

Given the discrete sample distribution of each of these fourrandom variables, we

compute an approximate version of it by means of a binning technique. For example,

in order to approximate the distribution offph we divide the x-axis in 13 intervals as

[0, k1], (k1, k2], ..., (k12, ∞). The valuesk1, .., k12 are computed as follows. First, we com-

pute the overall discrete sample distribution offph considering all the C-flows in the traf-

fic for an epochE. Then, we compute the quantiles6 q5%, q10%, q15%, q20%, q25%, q30%, q40%,

q50%, q60%, q70%, q80%, q90%, of the obtained distribution, and we setk1 = q5%, k2 = q10%,

k3 = q15%, etc. Now, for each C-flow we can describe itsfph (approximate) distribution as

6The quantileql% of a random variableX is the valueq for whichP (X < q) = l%.
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a vector of 13 elements, where each elementi represents the number of timesfphassumed

a value within the corresponding interval(ki −1, ki ]. We also apply the same algorithm for

ppf, bpp, andbps, and therefore we map each C-flowci into a pattern vector~pi of d = 52 el-

ements. Figure 23 shows the scaled visiting pattern extracted form the same C-flow shown

in Figure 22.
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Figure 23: Scaled visit pattern (shown in distribution) toGoogle for the same client in
Figure 22.

5.2.3.2 Two-step Clustering

Since bots belonging to the same botnet share similar behavior (from both the communica-

tion and activity points of view) as we discussed before, ourobjective is to look for groups

of C-flows that are similar to each other. Intuitively, pattern vectors that are close to each

other inRd represent C-flows with similar communication patterns in the C-plane. For ex-

ample, suppose two bots of the same botnet connect to two different C&C servers (because
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Figure 24: Two-step clustering of C-flows.

some botnets use multiple C&C servers). Although the connections from both bots to the

C&C servers will be in different C-flows because of differentsource/destination pairs, their

C&C traffic characteristics should be similar. That is, inRd, these C-flows should be found

as being very similar. In order to find groups of hosts that share similar communication pat-

terns, we apply clustering techniques on the datasetD = {~pi = F (ci )}i =1::n of the pattern

vector representations of C-flows. Clustering techniques perform unsupervised learning.

Typically, they aim at finding meaningful groups of data points in a given feature spaceF.

The definition of “meaningful clusters” is application-dependent. Generally speaking, the

goal is to group the data into clusters that are both compact and well separated from each

other, according to a suitable similarity metric defined in the feature spaceF [55].

Clustering C-flows is a challenging task because|D|, the cardinality ofD, is often large

even for moderately large networks, and the dimensionalityd of the feature space is also

large. Furthermore, because the percentage of machines in anetwork that are infected by

bots is generally small, we need to separate the few botnet-related C-flows from a large

number of benign C-flows. All these make clustering of C-flowsvery expensive.

In order to cope with the complexity of clustering ofD, we solve the problem in several

steps (currently in two steps), as shown in a simple form in Figure 24. At the first step,

we perform coarse-grained clustering on a reduced feature spaceRd′
, with d′ < d, using a

simple (i.e., non-expensive) clustering algorithm (we will explain below how we perform
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dimensionality reduction). The results of this first-step clustering is a set{C′
i }i =1:: 1 of γ1

relatively large clusters. By doing so we subdivide the datasetD into smaller datasets (the

clustersC′
i ) that contain “clouds” of points that are not too far from each other.

Afterwards, we refine this result by performing a second-step clustering on each dif-

ferent datasetC′
i using a simple clustering algorithm on the complete description of the

C-flows inRd (i.e., we do not perform dimensionality reduction in the second-step cluster-

ing). This second step generates a set ofγ2 smaller and more precise clusters{C′′
i }i =1:: 2 .

We implemented first- and second-step clustering using theX-means clustering al-

gorithm [75]. X-means is an efficient algorithm based onK-means [55], a very popular

clustering algorithm. Different fromK-means, theX-means algorithm does not require the

user to choose the numberK of final clusters in advance.X-means runs multiple rounds of

K-means internally and performs efficient clustering validation using the Bayesian Infor-

mation Criterion [75] in order to compute the best value ofK. X-means is fast and scales

well with respect to the size of the dataset [75].

For first-step (coarse-grained) clustering, we reduce the dimensionality of the feature

space fromd = 52 features (see Section 5.2.3.1) intod′ = 8 features by simply computing

the mean and the variance of the distribution offph, ppf, bpp, andbps for each C-flow.

Then we apply theX-means clustering algorithm on the obtained representation of C-

flows to find the coarse-grained clusters{C′
i }i =1:: 1. Since the size of the clusters{C′

i }i =1:: 1

generated by first-step clustering is relatively small, we can now afford to perform a more

expensive analysis on eachC′
i . Thus, for second-step clustering, we use all thed = 52

available features to represent the C-flows, and we apply theX-means clustering algorithm

to refine the results of first-step clustering.

Of course, since unsupervised learning is a notoriously difficult task, the results of

this two-step clustering algorithm may still be not perfect. As a consequence, the C-flows

related to a botnet may be grouped into some distinct clusters, which basically represent

sub-botnets. Furthermore, a cluster that contains mostly botnet or benign C-flows may
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also contain some “noisy” benign or botnet C-flows, respectively. However, we would

like to stress the fact that these problems are not necessarily critical and can be alleviated

by performing correlation with the results of the activity-plane (A-plane) clustering (see

Section 5.2.5).

Finally, we need to note that it is possible to bootstrap the clustering from A-plane

logs. For example, one may apply clustering to only those hosts that appear in the A-

plane logs (i.e., the suspicious activity logs). This may greatly reduce the workload of

the C-plane clustering module, if speed is the main concern.Similarly, one may bootstrap

the A-plane correlation from C-plane logs, e.g., by monitoring only clients that previously

formed communication clusters, or by giving monitoring preference to those clients that

demonstrate some persistent C-flow communications (assuming botnets are used for long-

term purpose).

5.2.4 A-plane Clustering

In this stage, we perform two-layer clustering on activity logs. Figure 25 shows the clus-

tering process in A-plane. For the whole list of clients thatperform at least one malicious
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Figure 25: A-plane clustering.

activity during one day, we first cluster them according to the types of their activities (e.g.,

scan, spam, and binary downloading). This is the first layer clustering. Then, for each

activity type, we further cluster clients according to specific activity features (the second
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layer clustering). For the scan activity, features could include scanning ports, that is, two

clients could be clustered together if they are scanning thesame ports. Another candi-

date feature could be the target subnet/distribution, e.g., whether the clients are scanning

the same subnet. For spam activity, two clients could be clustered together if their SMTP

connection destinations are highly overlapped. This mightnot be robust when the bots

are configured to use different SMTP servers in order to evadedetection. One can further

consider the spam content if the whole SMTP traffic is captured. To cluster spam content,

one may consider the similarity of embedded URLs that are very likely to be similar with

the same botnet [125], SMTP connection frequency, content entropy, and the normalized

compression distance (NCD [14, 117]) on the entire email bodies. For outbound exploit

activity, one can cluster two clients if they send the same type of exploit, indicated by the

Snort alert SID. For binary downloading activity, two clients could be clustered together if

they download similar binaries (because they download fromthe same URL as indicated

in the command from the botmaster). A distance function between two binaries can be any

string distance such as DICE used in [48].7

In our current implementation, we cluster scanning activities according to the destina-

tion scanning ports. For spam activity clustering, becausethere are very few hosts that

show spamming activities in our monitored network, we simply cluster hosts together if

they perform spamming (i.e., using only the first-layer clustering here). For binary down-

loading, we configure our binary downloading monitor to capture only the first portion

(packet) of the binary for efficiency reasons (if necessary,we can also capture the entire

binary). We simply compare whether these early portions of the binaries are the same or

not. In other words, currently, our A-plane clustering implementation utilizes relatively

weak cluster features. In the future, we plan to implement clustering on more complex

7In an extreme case that bots update their binaries from different URLs (and the binaries are packed to be
polymorphic thereby different from each other), one shouldunpack the binary using tools such as Polyun-
pack [87] before calculating the distance. One may also directly apply normalized compression distance
(NCD [14,117]) on the original (maybe packed) binaries.
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feature sets discussed above, which are more robust againstevasion. However, even with

the current weak cluster features, BotMiner already demonstrated high accuracy with a low

false positive rate as shown in our later experiments.

5.2.5 Cross-plane Correlation

Once we obtain the clustering results from A-plane (activities patterns) and C-plane (com-

munication patterns), we perform cross-plane correlation. The idea is to cross-check clus-

ters in the two planes to find out intersections that reinforce evidence of a host being part

of a botnet. In order to do this, we first compute a botnet scores(h) for each hosth on

which we have witnessed at least one kind of suspicious activity. We filter out the hosts

that have a score below a certain detection thresholdθ, and then group the remaining most

suspicious hosts according to a similarity metric that takes into account the A-plane and

C-plane clusters these hosts have in common.

We now explain how the botnet score is computed for each host.Let H be the set

of hosts reported in the output of the A-plane clustering module, andh ∈ H. Also, let

A(h) = {Ai }i =1::m h be the set ofmh A-clusters that containh, andC(h) = {Ci }i =1::n h be

the set ofnh C-clusters that containh. We compute the botnet score forh as

s(h) =
∑

i;j
j>i

t(A i)6=t(A j)

w(Ai )w(Aj )
|Ai ∩ Aj |
|Ai ∪ Aj |

+
∑

i;k

w(Ai )
|Ai ∩ Ck |
|Ai ∪ Ck |

, (3)

whereAi , Aj ∈ A(h) andCk ∈ C(h), t(Ai ) is the type of activity clusterAi refers to (e.g.,

scanning or spamming), andw(Ai ) > 1 is anactivity weightassigned toAi . w(Ai ) assigns

higher values to “strong” activities (e.g., spam and exploit) and lower values to “weak”

activities (e.g., scanning and binary download).

A hosth will receive a high score if it has performed multiple types of suspicious ac-

tivities, and if other hosts that are clustered withh also show the same multiple types of

activities. For example, assume thath performed scanning and then attempted to exploit a

machine outside the monitored network. LetA1 be the cluster of hosts that were found to
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perform scanning and were grouped withh in the same cluster. Also, letA2 be a cluster

related to exploit activities that includesh and other hosts that performed similar activi-

ties. A larger overlap betweenA1 andA2 would result in a higher score being assigned

to h. Similarly, if h belongs to A-clusters that have a large overlap with C-clusters, then

it means that the hosts clustered together withh share similar activities as well as similar

communication patterns.

Given a predefined detection thresholdθ, we consider all the hostsh ∈ H with s(h) > θ

as (likely) bots, and filter out the hosts whose scores do not exceedθ. Now, let B ⊆ H

be the set of detected bots,A(B ) = {Ai }i =1::m B be the set of A-clusters that each contains

at least one both ∈ B, andC(B ) = {Ci }i =1::n B be the set of C-clusters that each contains

at least one both ∈ B. Also, let K(B ) = A(B ) ∪ C(B ) = {K(B )
i }i =1::(mB+nB) be an

ordered union/set of A- and C-clusters. We then describe each both ∈ B as a binary vector

b(h) ∈ {0, 1}|K(B)|, where thei-th elementbi = 1 if h ∈ K(B )
i , andbi = 0 otherwise. Given

this representation, we can define the following similaritybetween botshi andhj as

sim(hi , hj ) =
mB∑

k=1

I(b(i )
k = b(j )

k ) + I(
mB+nB∑

k=mB+1

I(b(i )
k = b(j )

k ) ≥ 1), (4)

where we useb(i ) = b(hi ) andb(j ) = b(hj ), for brevity. I(X) is the indication function,

which equals to one when the boolean argumentX is true, and equals to zero whenX

is false. The intuition behind this metric is that if two hosts appear in the same activity

clusters and in at least one common C-cluster, they should beclustered together.

This definition of similarity between hosts gives us the opportunity to apply hierarchical

clustering. This allows us to build a dendrogram, i.e., a tree like graph (see Figure 26) that

encodes the relationships among the bots. We use the Davies-Bouldin (DB) validation

index [49] to find the best dendrogram cut, which produces themost compact and well

separated clusters. The obtained clusters group bots in (sub-) botnets. Figure 26 shows a

(hypothetical) example. Assuming that the best cut suggested by the DB index is the one at

height 90, we would obtain two botnets, namely{h8, h3, h5}, and{h4, h6, h9, h2, h1, h7}.
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Figure 26: Example of hierarchical clustering for botnet detection.

In our current implementation, we simply set weightw(Ai ) = 1 for all i andθ = 0,

which essentially means that we will consider all hosts thatappear in two different types of

A-clusters and/or in both A- and C-clusters as suspicious candidates for further hierarchical

clustering.

5.3 Experiments

To evaluate our BotMiner detection framework and prototypesystem, we have tested its

performance on several real-world network traffic traces, including both (presumably) nor-

mal data from our campus network and collected botnet data.

5.3.1 Experiment Setup and Data Collection

We set up traffic monitors to work on a span port mirroring a backbone router at the cam-

pus network of the College of Computing at Georgia Tech. The traffic rate is typically

100Mbps-300Mbps at daytime. We ran the C-plane and A-plane monitors for a continuous

10-day period in late 2007. A random sampling of the network trace shows that the traffic

is very diverse, containing many normal application protocols, such as HTTP, SMTP, POP,

FTP, SSH, NetBios, DNS, SNMP, IM (e.g., ICQ, AIM), P2P (e.g.,Gnutella, Edonkey, Bit-

Torrent), and IRC. This serves as a good background to test the false positives and detection

performance on a normal network with rich application protocols.
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We have collected a total of eight different botnets covering IRC, HTTP and P2P. Ta-

ble 8 lists the basic information about these traces.

Table 8: Collected botnet traces in BotMiner evaluation, covering IRC, HTTP and P2P
based botnets. Storm and Nugache share the same file, so the statistics of the whole file are
reported.

Trace Size Duration Pkt Flows Botnet clients C&C server
Botnet-IRC-rbot 169MB 24h 1,175,083 180,988 4 1
Botnet-IRC-sdbot 66KB 9m 474 19 4 1
Botnet-IRC-spybot 15MB 32m 180,822 147,945 4 1
Botnet-IRC-N 6.4MB 7m 65,111 5635 259 1
Botnet-HTTP-1 6MB 3.6h 65,695 2,647 4 1
Botnet-HTTP-2 37MB 19h 395,990 9,716 4 1
Botnet-P2P-Storm 1.2G 24h 59,322,490 5,495,223 13 P2P
Botnet-P2P-Nugache 1.2G 24h 59,322,490 5,495,223 82 P2P

We re-used two IRC and two HTTP botnet traces introduced in [48], i.e., V-Spybot,

V-Sdbot, B-HTTP-I, and B-HTTP-II. In short, V-Spybot and V-Sdbot are generated by

executing modified bot code (Spybot and Sdbot [16]) in a fullycontrolled virtual network.

They contain four Windows XP/2K IRC bot clients, and last several minutes. B-HTTP-I

and B-HTTP-II are generated based on the description of Web-based C&C communications

in [53,96]. Four bot clients communicate with a controlled server and execute the received

command (e.g., “spam”). In B-HTTP-I, the bot contacts the server periodically (about

every five minutes) and the whole trace lasts for about 3.6 hours. In B-HTTP-II, we have

a more stealthy C&C communication where the bot waits a random time between zero to

ten minutes each time before it visits the server, and the whole trace lasts for 19 hours.

These four traces are renamed as Botnet-IRC-spybot, Botnet-IRC-sdbot, Botnet-HTTP-1,

and Botnet-HTTP-2, respectively. In addition, we also generated a new IRC botnet trace

that lasts for a longer time (a whole day) using modified Rbot [12] source code. Again this

is generated in a controlled virtual network with four Windows clients and one IRC server.

This trace is labeled as Botnet-IRC-rbot.

We also obtained a real-world IRC-based botnet C&C trace that was captured in the

wild in 2004, labeled as Botnet-IRC-N. The trace contains about 7-minute IRC C&C com-

munications, and has hundreds of bots connected to the IRC C&C server. The botmaster set
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the command “.scan.startall” in the TOPIC of the channel. Thus, every bot would

begin to propagate through scanning once joining the channel. They report their successful

transfer of binary to some machines, and also report the machines that have been exploited.

We believe this could be a variant of Phatbot [16]. Although we obtained only the IRC

C&C traffic, we hypothesize that the scanning activities areeasy to detect given the fact

that bots are performing scanning commands in order to propagate. Thus, we assume we

have an A-plane cluster with the botnet members because we want to see if we can still

capture C-plane clusters and obtain cross-plane correlation results.

Finally, we obtained a real-world trace containing two P2P botnets, Nugache [64] and

Storm [44, 52]. The trace lasts for a whole day, and there are 82 Nugache bots and 13

Storm bots in the trace. It was captured from a group of honeypots running in the wild

in late 2007. Each instance is running in Wine (an open sourceimplementation of the

Windows API on top of Unix/Linux) instead of a virtual or physical machine. Such a

set-up is known as winobot [29] and is used by researchers to track botnets. By using a

lightweight emulation environment (Wine), winobots can run hundreds and thousands of

black-box instances of a given malware. This allows one to participate in a P2P botneten

mass. Nugache is a TCP-based P2P bot that performs encrypted communications on port 8.

Storm, originating in January of 2007, is one of the very few known UDP-based P2P bots. It

is based on the Kademlia [68] protocol and makes use of the Overnet network [8] to locate

related data (e.g., commands). Storm is well-known as a spambotnet with a huge number

of infected hosts [61]. In the implementation of winobot, several malicious capabilities

such as sending spam are disabled for legality reason, thus we can not observe spam traffic

from the trace. However, we ran a full version of Storm on a VM-based honeypot (instead

of Wine environment) and easily observed that it kept sending a huge amount of spam

traffic, which makes the A-plane monitoring quite easy. Similarly, when running Nugache

on a VM-based honeypot, we observed scanning activity to port 8 because it attempted

to connect to its seeding peers but failed a lot of times (because the peers may not be
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available). Thus, we can detect and cluster A-plane activities for these P2P botnets.

5.3.2 Evaluation Results

Table 9 lists the statistics for the 10 days of network data weused to validate our detection

system. For each day there are around 5-10 billion packets (TCP and UDP) and 30-100

million flows. Table 9 shows the results of several steps of filtering. The first step of filtering

(filter rule F1) seems to be the most effective filter in terms of data volume reduction.

F1 filters out those flows that are not initiated from internal hosts to external hosts, and

achieves about 90% data volume reduction. The is because most of the flows are within the

campus network (i.e., they are initiated from internal hosts towards other internal hosts).

F2 further filters out around 0.5-3 million of non-completely-established flows.F3 further

reduces the data volume by filtering out another 30,000 flows.After applying all the three

steps of filtering, there are around 1 to 3 million flows left per day. We converted these

remaining flows into C-flows as described in Section 5.2.3, and obtained around 40,000

TCP C-flows and 130,000 UDP C-flows per day.

Table 9: C-plane traffic statistics, basic results of filtering, and C-flows in BotMiner eval-
uation.

Trace Pkts Flows Filtered byF1 Filtered byF2 Filtered byF3 Flows after filtering C-flows (TCP/UDP)
Day-1 5,178,375,514 23,407,743 20,727,588 939,723 40,257 1,700,175 66,981 / 132,333
Day-2 7,131,674,165 29,632,407 27,861,853 533,666 25,758 1,211,130 34,691 / 96,261
Day-3 9,701,255,613 30,192,645 28,491,442 513,164 24,329 1,163,710 39,744 / 94,081
Day-4 14,713,667,172 35,590,583 33,434,985 600,901 33,958 1,520,739 73,021 / 167,146
Day-5 11,177,174,133 56,235,380 52,795,168 1,323,475 40,016 2,076,721 57,664 / 167,175
Day-6 9,950,803,423 75,037,684 71,397,138 1,464,571 51,931 2,124,044 59,383 / 176,210
Day-7 10,039,871,506 109,549,192 105,530,316 1,614,158 56,688 2,348,030 55,023 / 150,211
Day-8 11,174,937,812 96,364,123 92,413,010 1,578,215 60,768 2,312,130 56,246 / 179,838
Day-9 9,504,436,063 62,550,060 56,516,281 3,163,645 30,581 2,839,553 25,557 / 164,986
Day-10 11,071,701,564 83,433,368 77,601,188 2,964,948 27,837 2,839,395 25,436 / 154,294

We then performed two-step clustering on C-flows as described in Section 5.2.3. Ta-

ble 10 shows the clustering results and false positives (number of clusters that are not

botnets). The results for the first 5 days are related to both TCP and UDP traffic, whereas

in the last 5 days we focused on only TCP traffic.

It is easy to see from Table 10 that there are thousands of C-clusters generated each day.

In addition, there are several thousand activity logs generated from A-plane monitors. Since

we use relatively weak monitor modules, it is not surprisingthat we have this many activity

114



Table 10: C-plane and A-plane clustering results in BotMiner evaluation.
Trace Step-1 C-clusters Step-2 C-clusters A-plane logs A-clusters False Positive Clusters FP Rate
TCP/UDP
Day-1 1,374 4,958 1,671 1 0 0 (0/878)
Day-2 904 2,897 5,434 1 1 0.003 (2/638)
Day-3 1,128 2,480 4,324 1 1 0.003 (2/692)
Day-4 1,528 4,089 5,483 4 4 0.01 (9/871)
Day-5 1,051 3,377 6,461 5 2 0.0048 (4/838)
TCP only
Day-6 1,163 3,469 6,960 3 2 0.008 (7/877)
Day-7 954 3,257 6,452 5 2 0.006 (5/835)
Day-8 1,170 3,226 8,270 4 2 0.0091 (8/877)
Day-9 742 1,763 7,687 2 0 0 (0/714)
Day-10 712 1,673 7,524 0 0 0 (0/689)

logs. Many logs report binary downloading events or scanning activities. We cluster these

activity logs according to their activity features. As explained earlier, we are interested

in groups of machines that perform activities in a similar/coordinated way. Therefore, we

filter out the A-clusters that contain only one host. This simple filtering rule allows us to

obtain a small number of A-clusters and reduce the overall false positive rate of our botnet

detection system.

Afterwards, we apply cross-plane correlation. We assume that the traffic we collected

from our campus network is normal. In order to verify this assumption we used state-of-

the-art botnet detection techniques like BotHunter [46] and BotSniffer [48]. Therefore, any

cluster generated as a result of the cross-plane correlation is considered as afalse positive

cluster. It is easy to see from Table 10 that there are very few such false positive clusters

every day (from zero to four). Most of these clusters containonly two clients (i.e., they

induce two false positives). In three out of ten days no falsepositive was reported. In

both Day-2 and Day-3, the cross-correlation produced one false positive cluster containing

two hosts. Two false positive clusters were reported in eachday from Day-5 to Day-8. In

Day-4, the cross-plane correlation produced four false positive clusters.

For each day of traffic, the last column of Table 10 shows the false positive rate (FP

rate), which is calculated as the fraction of IP addresses reported in the false positive clus-

ters over the total number of distinct normal clients appearing in that day. After further
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analysis we found that many of these false positives are caused by clients performing bi-

nary downloading from websites not present in our whitelist. In practice, the number of

false positives may be reduced by implementing a better binary downloading monitor and

clustering module, e.g., by capturing the entire binary andperforming content inspection

(using either anomaly-based detection systems [88] or signature-based AV tools).

In order to validate the detection accuracy of BotMiner, we overlaid botnet traffic to

normal traffic. We consider one botnet trace at a time and overlay it to the entire normal

traffic trace of Day-2. We simulate a near-realistic scenario by constructing the test dataset

as follows. Letn be the number of distinct bots in the botnet trace we want to overlay to

normal traffic. We randomly selectn distinct IP addresses from the normal traffic trace and

map them to then IP addresses of the bots. That is, we replace anIPi of a normal machine

with theIPi of a bot. In this way, we obtain a dataset of mixed normal and botnet traffic

where a set ofn machines show both normal and botnet-related behavior. Table 11 reports

the detection results for each botnet.

Table 11: Botnet detection results using BotMiner.
Botnet Number of Bots Detected? Clustered Bots Detection Rate False Positive Clusters/Hosts FP Rate
IRC-rbot 4 YES 4 100% 1/2 0.003
IRC-sdbot 4 YES 4 100% 1/2 0.003
IRC-spybot 4 YES 3 75% 1/2 0.003
IRC-N 259 YES 258 99.6% 0 0
HTTP-1 4 YES 4 100% 1/2 0.003
HTTP-2 4 YES 4 100% 1/2 0.003
P2P-Storm 13 YES 13 100% 0 0
P2P-Nugache 82 YES 82 100% 0 0

Table 11 shows that BotMiner is able to detect all eight botnets. We verified whether

the members in the reported clusters are actually bots or not. For 6 out of 8 botnets, we ob-

tained 100% detection rate, i.e., we successfully identified all the bots within the 6 botnets.

For example, in the case of P2P botnets (Botnet-P2P-Nugacheand Botnet-P2P-Storm),

BotMiner correctly generated a cluster containing all the botnet members. In the case of

Botnet-IRC-spybot, BotMiner correctly detected a clusterof bots. However, one of the

bots belonging to the botnet was not reported in the cluster,which means that the detector

generated a false negative. Botnet-IRC-N contains 259 bot clients. BotMiner was able to
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identify 258 of the bots in one cluster, whereas one of the bots was not detected. Therefore,

in this case BotMiner had a detection rate of 99.6%.

There were some cases in which BotMiner also generated a false positive cluster con-

taining two normal hosts. We verified that these two normal hosts in particular were also

responsible for the false positives generated during the analysis of the Day-2 normal traffic

(see Table 10).

As we can see, BotMiner performs quite well in our experiments, showing a very high

detection rate with relatively few false positives in real-world network traces.

5.4 Limitations and Potential Solutions

Like any intrusion/anomaly detection system, BotMiner is not perfect or complete. It can

have false positives similar to the cases of BotSniffer because they both use horizontal

correlation. It is also likely that once adversaries know our detection framework and im-

plementation, they might find some ways to evade detection, e.g., by evading the C-plane

and A-plane monitoring and clustering, or the cross-plane correlation analysis. We now

address these limitations and discuss possible solutions.

5.4.1 Evading C-plane Monitoring and Clustering

Botnets may try to utilize a legitimate website (e.g.,Google) for their C&C purpose in

attempt to evade detection. Evasion would be successful in this case if we whitelisted such

legitimate websites to reduce the volume of monitored traffic and improve the efficiency of

our detection system. However, if a legitimate website, sayGoogle, is used as a means to

locate a secondary URL for actual command hosting or binary downloading, botnets may

not be able to hide this secondary URL and the corresponding communications. Therefore,

clustering of network traffic towards the server pointed by this secondary URL will likely

allow us to detect the bots. Also, whitelisting is just an optional operation. One may easily

choose not to use whitelisting to avoid such kind of evasion attempts (of course, in this case

one may face the tradeoff between accuracy and efficiency).
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Botnet members may attempt to intentionally manipulate their communication patterns

to evade our C-plane clustering. The easiest thing is to switch to multiple C&C servers.

However, this does not help much to evade our detection because such peer communica-

tions could still be clustered together just like how we cluster P2P communications. A more

advanced way is to randomize each individual communicationpattern, for example by ran-

domizing the number of packets per flow (e.g., by injecting random packets in a flow),

and the number of bytes per packet (e.g., by padding random bytes in a packet). However,

such randomization may introduce similarities among botnet members if we measure the

distribution and entropy of communication features. Also,this randomization may raise

suspicion because normal user communications may not have such randomized patterns.

Advanced evasion may be attempted by bots that try to mimic the communication patterns

of normal hosts, in a way similar to polymorphic blending attacks [38]. Furthermore, bots

could use covert channes [2] to hide their actual C&C communications. We acknowledge

that, generally speaking, communication randomization, mimicry attacks and covert chan-

nel represent limitations for all traffic-based detection approaches, including BotMiner’s

C-plane clustering technique. By incorporating more detection features such as content

inspection and host level analysis, the detection system may make evasion more difficult.

Finally, we note that if botnets are used to perform multipletasks (in A-plane), we may

still detect them even when they can evade C-plane monitoring and analysis. By using

the scoring algorithm described in Section 5.2.5, we can perform cross clustering analysis

among multiple activity clusters (in A-plane) to accumulate the suspicious score needed to

claim the existence of botnets. Thus, we may evennot require C-plane analysis if there is

already astrongcross-cluster correlation among different types of malicious activities in A-

plane. For example, if the same set of hosts involve several types of A-plane clusters (e.g.,

they send spams, scan others, and/or download the same binaries), they can be reported

as botnets because those events together are highly suspicious and most likely indicating

botnet behavior [46,48].
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5.4.2 Evading A-plane Monitoring and Clustering

Malicious activities of botnets are unlikely or relativelyhard to change as long as the bot-

master wants the botnets to perform “useful” tasks. However, the botmaster can attempt to

evade BotMiner’s A-plane monitoring and clustering in several ways.

Botnets may perform very stealthy malicious activities in order to evade the detection

of A-plane monitors. For example, they can scan very slowly (e.g., send one scan per hour),

send spam very slowly (e.g., send one spam per day). This willevade our monitor sensors.

However, this also puts a limit on the utility of bots.

In addition, as discussed above, if the botmaster commands each botrandomly and

individually to perform different task, the bots are not different from previous generations

of isolated, individual malware instances. This is unlikely the way a botnet is used in

practice. A more advanced evasion is to differentiate the bots and avoid commanding

bots in the same monitored network the same way. This will cause additional effort and

inconvenience for the botmaster. To defeat such an evasion,we can deploy distributed

monitors on the Internet to cover a larger monitored space.

Note, if the botmaster takes the extreme action of randomizing/individualizing both the

C&C communications and attack activities of each bot, then these bots are probably not

part of a botnet according to our specific definition because the bots are not performing

similar/coordinated commanded activities. Orthogonal tothe horizontal correlationap-

proaches such as BotMiner to detect a botnet, we can always use complementary systems

like BotHunter [46] that examine the behavior history ofdistincthost for a dialog (vertical)

correlation-based approach to detectindividualbots.

5.4.3 Evading Cross-plane Analysis

A botmaster can command the bots to perform an extremely delayed task (e.g., delayed for

days after receiving commands). Thus, the malicious activities and C&C communications

are in different days. If only using one day’s data, we may notbe able to yield cross-plane
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clusters. As a solution, we may use multiple-day data and cross check back several days.

Although this has the hope of capturing these botnets, it mayalso suffer from generating

more false positives. Clearly, there is a tradeoff. The botmaster also faces the tradeoff

because a very slow C&C essentially impedes the efficiency incontrolling/coordinating

the bot army. Also, a bot-infected machine may be disconnected from the Internet or be

powered off by the users during the delay and become unavailable to the botmaster.

In short, while it is possible that a botmaster can find a way toexploit the limitations of

BotMiner, the convenience or the efficiency of botnet C&C andthe utility of the botnet also

suffer. Thus, we believe that our protocol- and structure-independent detection framework

represents a significant advance in botnet detection. In ourfuture work, we will study new

techniques to monitor/cluster communication and activitypatterns of botnets, and these

techniques are intended to be more robust to evasion attempts.

5.5 Summary

Botnet detection is a challenging problem. In this chapter,we proposed a novel network

anomaly-based botnet detection system that is independentof the protocol and structure

used by botnets. Our system exploits the essential definition and properties of botnets, i.e.,

bots within the same botnet will exhibit similar C&C communication patterns and similar

malicious activity patterns. In our experimental evaluation on many real-world network

traces, BotMiner shows excellent detection accuracy on various types of botnets (including

IRC-based, HTTP-based, and P2P-based botnets) with a very low false positive rate on

normal traffic. BotMiner is promising because it can potentially resist the evolution and

changes in botnet C&C techniques in the future.
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CHAPTER VI

BOTPROBE: CAUSE-EFFECT CORRELATION-BASED BOTNET

C&C DETECTION USING ACTIVE TECHNIQUES

We have introduced BotHunter, BotSniffer, and BotMiner. These three systems use a pas-

sive strategy to monitor the network traffic. A limitation ofsuch a passive approach is the

relatively longer time in collecting enough evidence for detection. For example, BotMiner

is an offline correlation technique that performs analysis usually on one day’s C-plane

data. BotSniffer is quicker than BotMiner, but generally may require observing several

rounds/instances of message/activity responses for enough confidence of spatial-temporal

correlation.1 BotHunter tracks the bot infection dialog and requires observing multiple

stages. The main reason for the aforementioned systems to take a relatively long time for

detection is because theypassivelywait to observe enough events/evidences. It is possible

that these events may occur infrequently. For example, for an IRC-based botnet, the actual

C&C interaction is rare because the botmaster cannot alwaysbe online to command the bot

army.

In this chapter, we study botnet detection using active techniques toactivelycollect

evidences and thereby shorten the monitor and detection time, and present a new botnet de-

tection system, BotProbe. We want to answer the following questions: Assume we observe

only one round of botnet C&C interaction,2 can we still detect bots with a high probabil-

ity? What if we observezeroround of interaction? We will show that BotProbe can achieve

the detection goal for many real-world botnets that use chatting-like C&C protocols such

as IRC, and improve the effectiveness and efficiency compared to existing techniques in

1If there are enough bots monitored, BotSniffer only needs toobserve one round.
2One round of C&C interaction is defined as a typical command-then-response interaction. We further

clarify this command-response pattern of botnet C&C and various types of response in Section 6.1.
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many cases.

Key Observation: A typical way to detect bots by observing one C&C communication

interaction is to use a signature-based approach. However,such an approach is complicated

by a recent trend among bots to use an obfuscated (obscure) C&C communication. In this

chapter, we explore the feasibility of usingactivetechniques to assist with the C&C detec-

tion challenge. We posit that instead of passively inspecting two-way network flows, one

could engage in the active manipulation of selected suspicious sessions to better identify

botnet dialog. Our detection strategy, which we callbotnet probing, is based on two ob-

servations. First, a typical botnet C&C interaction has a clear command-response pattern,

and thereby a stateless bot will tend to behave deterministically3 to dialog replays, whereas

interaction with a human-controlled end point will be nondeterministic. Second, bots are

pre-programmedto respond to the set of commands they receive, and unlike humans, bots

have limited tolerance for typographical errors in conversations (aka the Turing test [101]).

New Approach and System: In this work, we focus on a specific class of botnets us-

ing chatting-like C&C protocols such as IRC, which is the most widely used C&C protocol

in present botnets. Based on the above observations, we develop a set of active prob-

ing techniques to detect stateless botnet communications,regardless of whether the botnet

communications are protected using obfuscation. At a first glance, these active techniques

may be aggressive and controversial because of the interference they may introduce to

normal benign communications/chatting. While a legitimate concern, we propose to ame-

liorate this interference in multiple ways. First, we provide a set of candidate filters that

use heuristics to filter out a large class of well-behaved connections. Second, we provide

a hypothesis testing framework that enables network administrators to tune the level of ex-

pected interference with detection rates. Finally, we argue that limited interference might

be acceptable in pure IRC-like chatting channels on which nocritical applications are built,

and certain deployments such as military scenarios, particularly if users are educated about

3Examination of popular bot source code and binaries revealsthat most bot communications are stateless.
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the presence of such probing monitors. We develop the BotProbe prototype system to

demonstrate this active technique. By actively probing botnets for several times, we can

accumulate enough evidence of cause-effect correlation caused by the command-response

pattern of botnet C&C. We only need to observe one or even zeroround of actual C&C

interaction before probing. Thus, we can greatly shorten the detection time compared to a

passive approach.

Contributions:

• We propose active botnet probing based on cause-effect correlation as a novel ap-

proach to complement existing botnet C&C detection.

• We present a hypothesis testing framework for detecting deterministic communica-

tion patterns. This helps us to achieve bounded false positive and false negative rates.

• We develop BotProbe, a prototype system implementation of the framework that

validates our approach with contemporary IRC-based bots such as Sdbot, Phatbot,

Rbot, RxBot, Agobot, Wargbot, and IRCBot.

• We show with a real-world example that BotProbe can also assist with automating a

chosen-ciphertext attack to break the encryption of some botnet C&C.

• We conduct a real user study on approximately 100 users to evaluate false positive

rates.

Chapter organization: In Sections 6.1, we present the problem statement and our

assumptions. In Section 6.2, we provide an overview of the architecture, and describe our

probing techniques and detection algorithms. In Section 6.3, we present our prototype

system and experimental results with botnet probing. We discuss concerns and limitations

in Section 6.4 and summarize our findings in Section 6.5.
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6.1 Problem Statement and Assumptions

A unique property of a botnet that separates it from other malware families is the command

and control (C&C) channel, which the botmaster uses to command the bot army to perform

different tasks. The detection of this C&C channel is fundamental to the identification of

compromised victims and tear down of C&C servers. Although bot developers have the

option of devising novel protocols for C&C, most contemporary bot C&C communications

are overlaid onto existing client-server protocols such asIRC. This prevailing tendency to

overlay botnet C&Cs onexistingprotocols may have several plausible explanations: (a)

existing intrusion detection systems are trivial to evade (e.g., using obfuscation schemes

discussed shortly) and have not provided sufficient incentive for botnets to innovate; (b)

existing protocols provide greater flexibility in using available server software and installa-

tions; (c) existing protocols invoke less suspicion than neoteric protocols.

In this work, we limit our focus on botnet C&Cs usingchatting-likeprotocols such as

IRC and Instant Messaging [72], which count for a large portion of contemporary botnets.

IRC is still the most prevailing communication channel among botnets. Except for a few

HTTP botnets (e.g., Bobax [96]) and P2P botnets (e.g., Nugache [64] and Storm [44]),

most of the discovered botnetsare IRC-based. In [72], the feasibility of using some instant

messaging protocols such as AIM is also discussed.

While botnets still chooses to use chatting-like communication (e.g., IRC) as the under-

lying C&C protocol, the message/content portion of the conversations can be obfuscated

(e.g., using a custom dialect, a foreign language, or a naiveencryption technique such as

simple XOR, substitution or hashing) to evade signature-based intrusion detection systems

and to protect botnet C&Cs from being spied by honeypot-based tracking approaches [82].

Actually, we have observed a lot of new generation of IRC botnets utilizing such obscure

C&Cs (real-world examples will be showed in Section 6.3). Existing botnet detection ap-

proaches rely heavily on signatures, which are of limited value when even unobfuscated

C&C protocols and key word exchanges are easily and rapidly altered. The need fornew
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methods to detect both obfuscated and rapidly changing C&C communication channels is

dire.

Behavior-based detection approaches such as our BotHunter, BotSniffer, and BotMiner

can detection botnets through behavior anomaly. Nevertheless, as discussed earlier, sys-

tems like BotHunter still use signature-based component for C&C communication detec-

tion. More importantly, these passive monitoring systems usually require a relatively longer

time to observe sufficient communication/activity/behavior for accurate detection. Real-

world IRC-based botnet C&C communications, however, usually can be quite, i.e., they

have infrequent C&C interactions because the botmaster is not always online. Our goal

here is to evaluate the feasibility of detecting botnet C&C channels usingactivenetwork

traffic inspection strategies, given observing only limited number of C&C interactions,

thereby to shorten the detection time. By active, we mean that we assess traffic for sus-

picious traffic sessions, which may lead us to dynamically inject packets that will probe

the internal client to determine whether that side of the communicating/chatting session is

being managed by a human or a bot.

To achieve the goal, first we need to examine theinvariant that can be used to differ-

entiate a bot from human chatting. We observe that bots arepre-programmed to respond

to certain received commands, and these responses are consistent across command repe-

tition. Different from normal human chatting, the above command-response pattern has

a strong cause-effect correlation, i.e., the command causes the response in a deterministic

way. This is the key intuition we use in designing our algorithm. In addition, we observe

that bots are different from humans in tolerating typographical errors, i.e., if the command

is altered by even one character, bots are not likely to process the command properly. This

auxiliary intuition helps us design one of our detection algorithms. Before introducing our

algorithms and system in detail, we present the adversary model, i.e., or more precisely, the

detailed communication patterns that we seek to identify when adversaries communicate

with compromised machines inside our network perimeter.
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Adversary Assumption: Botnet C&C communications are well-structured duplex flows,

similar to a command-response protocol, i.e., a bot should respond when it receives a pre-

defined command in a reasonable time. The network-level response of a bot to an (ob-

fuscated) command might be either message response or activity response, or both [48]. A

typical example of message response is an IRCPRIVMSGmessage. For example, when the

botmaster issues a “.sysinfo” command,4 each bot replies with aPRIVMSG message

telling its host system information, such as CPU, memory, and software version. There are

three most common activity responses: scan response (bot performs network scan or DoS

attack), third-party access (e.g., bot connects to a certain address to download/update its

binary), and spam response (bot sends spams). For instance,when the botmaster issues a

scanning command (e.g., “.scan.startall”), the bots usually perform network scan-

ning and reply with the scanning progress and/or any new victims they have infected. This

involves both an activity response (scan) and a message response. One may define other

possible responses, but from our observation of live bot infections, these aforementioned

types of responses are highly representative and regularlyencountered.

Fortunately, the assumption of command-response pattern holds in almost all exist-

ing botnets, because the botmaster needs the bots to performsome (malicious) activity,

and usually requires feedback to track the bot-infected machine information and execu-

tion progress/result from its bot army. Thus, we can observemessage/activity responses

corresponding to most botnet commands. According to a honeynet technical report [126],

about 53% of botnet commands observed in thousands of real-world IRC-based botnets

are scan-related (for propagation or reconnaissance) and about 14.4% are related to binary

download (for malware update). Also, many HTTP-based botnets are primarily used for

sending spam [96]. Thus, for most infections, we can expect to observe (malicious) activity

responses with a high probability [24].

4We assume the botmaster could obfuscate the C&C channel using simple encryption or substitution, e.g.,
say “hello” instead of “.sysinfo.”
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Detection Assumption: We now discuss the design assumptions used in defining our

architecture for actively probing and detecting botnet C&Cchannels:

• Input Perspective.Our assumed solution will reside at the network egress point(as a

middlebox), where it can observe all flows that cross the network perimeter. Further-

more, the system is in-line with the communication, and has the authority to inject or

modify inboundpackets, as necessary.

• Chatting Protocol Awareness.Our solution incorporates knowledge of the standard

(chatting) protocols that botnets use to overlay their C&C communications. For

example, in the case of IRC-based bots, we can comprehend IRCkeywords and

PRIVMSG message exchanges.

• C&C Grammar Agnostic.We do not assume ana priori understanding of the syn-

tax and semantics of the botnet C&C grammar that is overlaid on standard network

protocols.

6.2 Active Botnet Probing: Architecture and Algorithms

6.2.1 Architecture Design

Our botnet C&C detection architecture has two integral components, as shown in Figure

27.

Internet

Router Middlebox ...

Filtering,
Protocol matching,

Sampling

Active Probing,
Hypothesis testing

Network   Traffic Network   Traffic

Figure 27: Two-layer architecture of using active techniques for identifying botnet C&Cs.
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The first component performs benign traffic filtering, protocol-matching (selects proto-

cols often exploited for C&C transmissions, e.g., IRC), andflow sampling. Thus, it leaves

only a small portion of highly suspicious candidates worthyof deeper examination. Benign

(chatting-like) traffic filtering modules can be implemented using a general traffic feature

vector (e.g., duration of the flow, average bytes per packet,average bytes per second) sim-

ilar to [59, 66, 98]. Or, in the case of IRC-based C&C detection, we can use the following

protocol matching policies to perform detection in a port-independent fashion:

1. A traffic filter removes non-TCP flows.

2. Port-independent IRC protocols are keyword matched, e.g., “NICK,” “ USER,” “ PRIVMSG.”

This analysis occurs on the first few packets of established TCP flows (which indicate

the beginning of an IRC session [5]).

3. A volume filter that mainly focuses on infrequent chattingIRC channels (because

overly chatty IRC channels are unlikely to be used for botnetC&C).

4. A message filter finds a candidate list of command-like packets (IRCPRIVMSG and

IRC TOPIC) that can cause client responses.

Once we have completed the above down-selection to our candidate flows, we then

focus our analyses on theTOPIC andPRIVMSG message packets, where the overlay C&C

commands/responses typically reside. In addition, one canincorporate any other behavior-

based logic into these filters.

The second component implements what we refer to as ourBotProbe analysisscheme.

To illustrate the scheme, let us suppose we have a candidate suspicious IRC session and

we need to further identify whether there is another layer ofoverlay C&C-like protocol.

We observe a command-then-response-like packet pair(Pc, Pr ) wherePc is a short packet

from the server, andPr is a response from the client immediately after the receiving of
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Pc.5 We hypothesize that this command-response pattern is from abot instead of a human.

However, observing only this likely command-response pairis not enough to make the

claim, because it could be caused by chance.6 We want to make sure whether there is truly

a cause-effect correlation between the command and the response, which is a distinguishing

feature between botnet C&C and human chatting. To achieve the detection goal with high

accuracy, we perform several rounds of active probing and use a sequential hypothesis

testing technique to obtain enough confidence. Next sectionwill detail the design space of

active probing techniques.

6.2.2 Design Choices of Active Probing Techniques

We investigate the design choices of active probing strategies and illustrate several probing

techniques in Figure 28. This is by no means a complete list, but provides a good coverage

and demonstration of active probing techniques. BotProbe can use one or a combination of

these techniques.

P0 (Explicit-Challenge-Response).An example explicit-validation mechanism is one

in which educated users participate in the BotProbe scheme knowingly. For example, a

BotProbe system may prompt users to perform a reverse Turingtest, when a new IRC

session among two IP addresses is first encountered by BotProbe. The in-line monitor

could request that the internal human IRC participant visita website to read and translate

a CAPTCHA [107]. Alternatively, BotProbe can inject a simple puzzle for the internal

participant to solve. Although simple and effective, such atechnique requires user aware-

ness, compliance, and tolerance to be successful. We further discuss our experience of this

technique in an actual user study in Section 6.3.3.

P1 (Session-Replay-Probing).The BotProbe monitor may spoof the address of the

server and insert additional TCP packets that replay the same application commandPc to

5Sometimes there is no such a message response packetPr, but rather a activity response. We still usePr
to stand for this activity response.

6The false positive rate can be higher particularly ifPr is only a message response packet because it could
be just a normal prompt chatting message from a human.
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Figure 28: Example active probing techniques. Herecmd′ means a modified command
packet,seq′ means modification is needed on the sequence/acknowledge number to keep
the TCP session.

the client several times. If the remote end point is a bot it islikely provide responses that

are deterministic (with respect to both content and timing).

P2 (Session-Byte-Probing).The BotProbe monitor may randomly permute certain

bytes of the application command.7 If the client is a bot, then we expect it to be highly sen-

sitive to modifications of commands and hence to respond differently or drop the modified

packet. However, a human user in an IRC chatting channel would have a higher tolerance

for typographical mistakes in an IRC message. We may repeat our test as many times as

necessary by interleaving strategies P1 and P2, until we have sufficient evidence to validate

7Since many common botnet command names (e.g,.dos, .scan) are embedded in the initial bytes
of IRC PRIVMSG or TOPIC message packets, we recommend biasing the byte modificationalgorithm to
choose the early bytes with higher probability.
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our hypothesis. We describe the algorithm (Interleaved-Binary-Response-Hypothesis) in

more detail in Section6.2.3.

Note that strategies P1and P2 may break existing connections (by injecting new pack-

ets) if subsequent C&C communications occur in the same TCP connection. To recover

from this, our in-line botnet probing system should adjust the TCP sequence/acknowledge

numbers and checksums to account for the new packets that were introduced because of

the probes. Also, the above two probing strategies introduce some amount of interference

into existing sessions at the application level. Fortunately, we find that, for our targeted

chatting-like protocols, we have an alternate probing technique (P3), which does not dis-

turb existing sessions.

P3 (Client-Replay-Probing). Chat protocols like IRC and IM allow users to directly

message each other. In such instances, we can instantiate a new user that logs into the

channel and sends the observed command(s)Pc to the selected client (pretending to be the

botmaster). By doing this, we do not break existing connections, but may achieve an effect

similar to that above. Figure 28(b) illustrates this scenario.

P4 (Man-In-The-Middle-Probing). The above techniques do not directly intercept a

new command packet. However, in some cases (as discussed in Section 6.4) such as highly

stateful C&Cs where simple replaying may not work, we can intercept thenewcommand,

and launch a man-in-the-middle-like chatting message injection.

P5 (Multiclient-Probing). The above techniques discuss probing sessions from a sin-

gle client. However, when there are multiple likely-infected clients in the monitored net-

work that are communicating with the same C&C server, we can distribute the probes into

multiple clients, and reduce the number of probing rounds weneed to test our hypothesis,

as briefly discussed in Section 6.4.
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6.2.3 Algorithm Design for Botnet Detection Using Active Probing

Based on the active probe techniques, we now describe several simple detection algorithms

for isolating deterministic botnet communication patterns from human chatting dialog with

controlled accuracy (i.e., to achieve a desired false positive/negative rate). We will use

a sequential probability ratio testing (SPRT [108]) technique, which has been applied in

several other scenarios such as port scan detection [57] andBotSniffer [48]. To illustrate the

algorithm, we start with a basic description of how to apply ahypothesis testing framework

using our six probing strategies (P0-P5). We anticipate that all the probing strategies can

be iterated through the following testing strategy.

Let us assume that we are given a (suspicious) IRC session andwe want to differentiate

whether it is more likely a botnet C&C channel or a human chatting session. We perform

one or more rounds of P0 probing (i.e., inject a challenge to the client, ask the local par-

ticipant (within our network boundary) to solve a puzzle). We denoteH1 as the hypothesis

“botnet C&C,” H0 as the hypothesis “normal chat.” Let a binary random variableD denote

whether we observe awrong reply for a challenge from the client or not (that is,D = 1

means an incorrect reply). We also denoteθ1 = P r(D = 1|H1), θ0 = P r(D = 1|H0).

If the client is a bot, we presumeθ1 ≈ 1, assuming that bots are unable to reliably solve

arbitrary puzzles on demand. For a human, such a puzzle is easy to answer, i.e.,θ0 ≈ 0.

If we want to have very high accuracy for the hypothesis (let us denoteα, β as the false

positive rate and false negative rate we want to achieve), wecan perform several rounds of

probing. Then, after observingn rounds, we get a likelihood ratioΛn = P r (D 1;:::;D n|H 1)
P r (D 1;:::;D n|H 0) . Di

represents our independent identical distribution (i.i.d.) observation result from our client

probe test. We defineΛn = ln
∏

i P r (D i|H 1)∏
i P r (D i|H 0) =

∑
i ln P r (D i|H 1)

P r (D i|H 0) . To calculate this likelihood

Λn , we are essentially performing a threshold random walk. Thewalk starts from origin

(0), goes up with step lengthln � 1
� 0

whenDi = 1, and goes down with step lengthln 1−� 1
1−� 0

whenDi = 0. If Λn is greater than a thresholdt1 = ln 1−�
� we declareH1 to be true,i.e.,

it is a botnet C&C. IfΛn is less than another thresholdt2 = ln �
1−� , this indicates a normal
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IRC dialog. If Λn is in betweent1 and t2 we proceed with additional rounds of testing.

A nice property of this SPRT/TRW algorithm is that it can achieve bounded false positive

and false negative rates as desired, and it usually needs only a few rounds to reach a deci-

sion [108]. We call our first extension of the algorithmTuring-Test-Hypothesisbecause it

uses explicit challenge response. This algorithm even doesnot require observing any actual

botnet C&C interaction.

Similarly, we can adapt the algorithm to use the P1 techniquein every round. LetPc

be a suspicious command packet from the server to the client.We replayPc in each round

and we denoteD to indicate whether or not a response from the client is observed. We call

this Single-Binary-Response-Hypothesisalgorithm because this test considers the probe

response as a binary outcome. Depending on the response we observe (IRCPRIVMSG

message, scanning, spamming, or third-party access), we iterate the TRW process at differ-

ent scales, becauseθ0, θ1 (the corresponding probability associated with a bot or human) is

different for different responses. For example, a human-driven IRC session is very unlikely

to perform scanning when receiving a chatting message. Thus, we improve our confidence

when we observe a scanning response corresponding to the replayed (command) message.

If we receive multiple different types of responses corresponding to the same command,

we choose the one that provides greater confidence (walks a larger step). The exact number

of rounds we need in this case is discussed in the next section. In general, Single-Binary-

Response-Hypothesis is very effective if the replayed command packet is scan,spam or

binary download related. As shown in Section 6.2.4, we may need onlyoneextra replay in

addition to the original command, i.e., totally two rounds to detect a botnet.

In addition to performing binary response testing, we can further evaluate whether the

response issimilar to the previous response observed, because bot responses may not be

perfectly identical across multiple command replays. We hypothesize that for bot C&C

communication, responses to the same command will be the same, or very similar (in

structure and content). We can design a new hypothesis algorithm that inspects whether a
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response is correlated to previous responses using a simpleedit distance metric or a DICE

metric as in [48]. We call this extensionCorrelation-Response-Hypothesisalgorithm.

Finally, we introduceInterleaved-Binary-Response-Hypothesisalgorithm. In each

round, we perform interleaved P1 and P2 probing, i.e., replaying the originalPc packet,

and then replaying a modifiedPc packet. D = 1 denotes the observation of a response

from the replayedPc, and no response from modifiedPc. The assertion is that bots will

reliably respond toPc, but will not recognize the modified command. This occurrence is

then observed asD = 1. To a human user, these two are similar (a modifiedPc is just

like a typographical error (typo), and in chatting, a typo isnormal and generally not a

problem). It is hard to predict how normal users may respond when they receive these two

replayed IRCPRIVMSG messages, but the probability of obtaining repeatable responses

from replayedPc and no responses from modifiedPc should diminish with rounds. A

naive assumption is that the human responses to tampered packets are uniformly random,

θ0 = P r(D = 1|H0) = 1/4. In reality, normal users would quickly lose patience upon

receiving multiple similar IRC messages and hence this probability θ0 should be lower than

the uniformly random case. Our later user study (in Section 6.3.3) also confirms thatθ0 is

very low.

One benefit of the Interleaved-Binary-Response-Hypothesis algorithm is that we can

have ageneralway to detect athird-party accessresponse and do not rely on content sig-

natures (e.g., PE signature as used in BotHunter [46] to detect egg downloading). This has

the advantage when we do not have signatures for detecting these third-party access, e.g.,

the access is not for a PE executable, or the access connection does not yield a successful

download of a PE executable. We begin by building a suspicious access set containing ad-

dresses (most likely, HTTP addresses) that appear after thePc but not after the modifiedPc.

Then for each subsequent round, we assignD = 1 if we see an address from the suspicious

set still appear upon replay ofPc, but not upon sending of the modifiedPc.

We have introduced several different detection algorithms. Now we discuss the typical
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selection of proper algorithms in practice when facing different type of response or differ-

ent combination of responses. We think that for a normal hostin chatting, the probability

of performing a certain (malicious) activity response (e.g., scan, spam) is lower than per-

forming a message response. The general principle we need tofollow here is to choose the

algorithm that favors the response with the lowest probability and thereby makes the fewest

probing and the largest walk in the thresholded random walk.In the following analysis we

assumeP rob(scan) ≈ P rob(spam) < P rob(3rd − party − access) < P rob(message)

in the case of a normal chatting client.

If we observe a scan/spam response associated with a command(there might be other

responses such as an IRCPRIVMSGmessage), we chooseSingle-Binary-Response-Hypothesis

algorithm on the scan/spam response, and ignore other responses. Usually, we only need

another active probing (using P1) to declare a botnet as shown in Section 6.2.4 and 6.3.2.

It is possible that these scan/spam responses are long-lasting, i.e., we still observe the re-

sponse to the original command after we perform P1 (a replayed command). However,

we do not consider this as a problem, because in any way we still detect the bot. Here

our detection performance is at least no worse than the approaches that issue alerts when

observing the combination of IRC events and scan events suchas [18] and BotHunter [46].

If we observe a third-party access (by matching a PE signature) associated with a com-

mand (there might be some message response, but no scan/spamresponses), we choose

Single-Binary-Response-Hypothesisalgorithm on the third-party access response.

For the rest combination of responses (e.g., a message response and a third-party ac-

cess response without PE signature capturing) or only a message response, we can choose

Interleaved-Binary-Response-Hypothesisalgorithm. If there are both a message response

and a third-party access observed, to make a walk in the algorithm, we always pick the type

of response that can make a larger step (third-party access in this case).
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6.2.4 Evaluating User Disturbance and Detection Accuracy Tradeoff

We now describe how the above algorithms can be adapted to trade off user disturbance

with system performance. For benign IRC chat sessions, replaying or modifying some

byte is essentially equivalent to receiving a duplicate message or receiving a message with

a typo: humans have natural resilience to at least limited occurrences of these events. The

Client-Replay-Probing technique, which establishes a newsession, is even less harmful.

Nevertheless, we acknowledge that active modifications to user IRC sessions may impose

some degree of cost to human users. We leave a more detailed discussion on the legal

concerns of using active techniques in Section 6.4.

As discussed earlier, in order to have a high confidence of hypothesis testing, we may

needN rounds of probing. If we are concerned about the disturbance/interference to nor-

mal users, we could use the number of rounds (packets modified/replayed) by active prob-

ing as a means to quantify the degree of disturbance. Clearly, less disturbance means fewer

rounds, smallerN , which on the other hand, may affect the performance of detection. For-

tunately, because of the use of SPRT, the average number ofN to make a decision is quite

small. To produce a botnet C&C declaration, the expected number of rounds we need is

[108]

E[N |H1] =
β ln �

1−� + (1 − β) ln 1−�
�

θ1 ln � 1
� 0

+ (1 − θ1) ln 1−� 1
1−� 0

Similarly, to produce a human user IRC channel declaration,the expected number of

rounds is

E[N |H0] =
(1 − α) ln �

1−� + α ln 1−�
�

θ0 ln � 1
� 0

+ (1 − θ0) ln 1−� 1
1−� 0

Figure 29 shows the average number of rounds we need to declare a normal user (a)

or bot (b). For example, if we set parametersθ1 = 0.99, θ0 = 0.15, and our desired false

positive/false negative rates areα = 0.001, β = 0.01, then the average number of rounds

to declare a botnet is aboutN1 = 3.7. Likewise, the average number of rounds to declare

a human user is less than 2 for IRC (approximatelyN0 = 1.3). If we observe some scan
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Figure 29: Disturbance to normal user and the effect on detection.

response, we can use a lower probability ofθ0, e.g.,θscan
0 = 0.01, then it will take less than

two rounds (i.g., one extra replay) to detect bots on average.

In practice, our system could be bolstered by an IRC channel whitelist to minimize user

disturbance (i.e., once an IRC server/channel is validated, we will not disturb other users for

a certain time window, and the time window could be randomized). Finally, the BotProbe

strategy should be viewed as one input among a broader set of threat indicators that can

be applied for detecting internal botnet infections. For example, the results produced by

the BotProbe hypothesis testing framework could be incorporated into systems such as

BotHunter [46], which considers the full set of potential botnet-related infection indicators,

such as exploit usage, egg download events, and inbound and outbound attack behavior.

6.3 Experiments with BotProbe

6.3.1 BotProbe: a Prototype Active Botnet Probing System

We have implemented a prototype middlebox system called BotProbe for the purpose of

evaluating our active probing techniques. BotProbe is implemented as a collection of Click

routing elements [60]. Click provides a C++ software framework for packet processing,

with impressive scaling performance and a flexible configuration language, that makes it
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ideal for building software routers and middleboxes.
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Figure 30: Click configuration for BotProbe. The figure shows a configuration for black-
box testing on existing bot binaries. If BotProbe is deployed as a middlebox into a real
network, we can remove the IRC Server, SimpleResponder, andDNSResponder elements.

The architecture shown in Figure 30 is implemented in 2,500 lines of C/C++ code.

The key elements in Figure 30 that we developed are WatchList, IRCMatcher, and Ac-

tiveProbe. WatchList is a Click “information” element thatkeeps track of live TCP flows

and IRC records. The IRCMatcher uses a WatchList to maintains flow records and exam-

ines incoming packets to identify IRC flows. The ActiveProbeelement monitors all IRC

flows, performs active probing if the IRC channel is deemed suspicious, and modifies TCP

sequence/acknowledge numbers and checksums when necessary.

To simplify black-box testing on existing bot binaries, we also implemented the follow-

ing elements: (i) an IRCServer element, which plays the role of a simple IRC server, (ii)

a SimpleResponder that handles all non-IRC connections by acknowledging every packet

it receives, and (iii) a DNSResponder that answers DNS queries with a local address. If

BotProbe is deployed in-line as a middlebox into a real network, we can simply remove
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these three elements.

6.3.2 In Situ Experimental Evaluation

We evaluate the detection performance in a virtual network environment with several mali-

cious IRC bots including Sdbot, Phatbot, Rbot, RxBot, Agobot, Wargbot, and IRCBot that

we obtained from our bot source code repository and honeynetcapture in the wild. The

purpose is to test the false negative rate, i.e., how many botC&Cs are missed by BotProbe?

We answer this question usingin situVMware testing of real-world bot binaries described

below. We also need to test the false positive rate, i.e., howfrequently could normal chat-

ting sessions be mislabeled as botnet C&C using BotProbe techniques. We explore this

through a user study described in Section 6.3.3.

6.3.2.1 Detection Performance and Analysis

We begin our analysis by conducting a series ofin situ experiments to evaluate the false

negative rate. We proceed by executing the bot in a Windows XP(VMware guest) instance

and monitoring with BotProbe running on the Linux host machine. Initially, BotProbe

essentially acts as a faithful NAT middlebox interposing all communications between the

infected host and the Internet. If the IRCMatcher element identifies an IRC session, the

flow will be forwarded to the IRCServer element that handles and responds to all IRC

requests. The ActiveProbe element resides between the bot client and the IRCServer ele-

ment, monitoring chatter and introducing active probes at appropriate time (e.g., when the

channel is idle on a suspicious session). While the IRCServer element has the actual botnet

commands, we do not assume the ActiveProbe element knows thecommands, as BotProbe

runs in the realistic scenario.

Note, in real-world IRC based botnets, we observe most of thecommands are in IRC

TOPIC messages. This is because that botmasters are not online allthe time. In order

to instruct bots even when they are not online, botmasters usually put the commands in

theTOPIC of the channel. Thus, whenever a bot joins the channel, it will understand the
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commands inTOPIC and execute (without authentication). In such cases where there is

noPRIVMSG message from the server but client responses are still produced, we can pre-

sume theTOPIC is the command and play the probing game by manipulating observed

TOPIC messages (332). We use this trick in our experiments, in order to faithfully repli-

cate real-world scenario. In addition, as discussed earlier in Section 6.2.3, BotProbe per-

forms Single-Binary-Response-Hypothesis or Interleaved-Binary-Response-Hypothesis al-

gorithm in our experiments depending on what kind of (combination of) response(s) it

observes.

We evaluate BotProbe on several real-world IRC bots that canbe grouped into three

classes.

1. Open-source bots with obfuscated communication. Our first case study is an “open

source” (as described in the bot documentation) IRC bot called Spybot, which was released

in 2003. Being open source, many variants of this bot are on the Internet, making it one

of the more popular botnet families [16, 40]. Spybot is also equipped with a command en-

cryption option that obfuscates C&C communication. The encryption method implemented

is a simple byte shift scheme. We recompiled the Spybot source with the encrypt option

enabled and tested the binary using BotProbe.

In evaluation, we configured the IRCServer to issue a set of commonly used commands

listed in Table 12 (one command in each test). We set the parameters of the hypothesis

testing algorithm to beθ1 = 0.99, θ0 = 0.15 giving expected false positive (FP) and false

negative (FN) rates of 0.001 and 0.01, respectively.8 We setθscan
0 = 0.01, because the prob-

ability that a normal chatting client has scan response is low (much lower than an IRC mes-

sage response). Similarly, for a third-party access response, we setθ3rd−party −access
0 = 0.02.

We used this parameter setting in our entire experiments. Inthe test on Spybot, BotProbe

8Thisθ0 is for the case of Interleaved-Binary-Response-Hypothesis on message response only.
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took two probes when the command was “scan” (Single-Binary-Response-Hypothesis al-

gorithm was automatically performed), two probes when the command was “download”

(Interleaved-Binary-Response-Hypothesis algorithm wasautomatically performed because

we do not use any PE signature to identify access response), and four probes when using

commands such as “info” and “passwords” (Interleaved-Binary-Response-Hypothesis al-

gorithm was automatically performed).

Table 12: BotProbe test on Spybot and Rbot.
Bot Original cmd Obfuscated cmd IRC response Activity response No. rounds
Spybot info otlu Version:... cpu:... - 4

passwords vgyy}uxjy Error operation failed - 4
scan 192... yigt&7?847<>477<4<&79?&7 Portscanner startip:... scan 2
download http:... ju}trugj&nzzv@55oxi... download http:... 3rd-party access 2

Rbot .id - [MAIN]: Bot ID: rx01. - 4
.sysinfo - [SYSINFO]: [CPU]: ... - 4
.scan 192... - [SCAN]: Port scan started... scan 2

2. Bot binaries with clear-text communication. We tested a few other bots, e.g., Phat-

bot, Rbot, Rxbot, Sdbot [16], in our controlled network. In these experiments, C&C ex-

changes are in clear text by default. However, we noticed that the source code for these

bots includes encryption and decryption functions, shell code encodings, and support for

polymorphism. It is straightforward to enable the use of these encryption routines for com-

mand obfuscation. The performance of BotProbe on these botswas identical to Spybot,

i.e., it took two or four rounds of probes, depending on the command.

3. Bot binaries with obfuscated communication. Next, we tested on a recent bot binary

(W32.Wargbot as labeled by Symantec) captured in the wild [28]. The botmaster put an en-

crypted command (shown below) in the IRCTOPICmessage for bots to execute upon join.

Subsequently, BotProbe automatically performed Single-Binary-Response-Hypothesis al-

gorithm, and it took only one extra probe to declare the bot because the bot had background

scanning behavior.

!Q ;\\|!Q <W:Z<Z=B=B=>;P;E;E<[=;<Y=>=:<S<U<W;D<U===;;E<V<[=@<W<U=B===@=G;E<V

<[=@;I;O;N;O;E;G;G;N;G;J;H;L;G;O;H<Q;M;J;F;K;D<\\=><Y
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We then enabled Interleaved-Binary-Response-Hypothesisalgorithm on the same bot.

Again BotProbe took two total rounds to declare the bot, and this times it reported observ-

ing a third-party access response (the bot initiated an HTTPGET request when it received

theTOPIC command), which was suppressed in the previous test becauseBotProbe au-

tomatically chose Single-Binary-Response-Hypothesis once it observed scanning behavior

(which yielded a larger walk in TRW than the case observing a third-party access response,

as discussed in Section 6.2.3). This third-party access response is interesting because it es-

tablished some mapping between the obfuscated command and the corresponding visited

URL. By intentionally changing different portion of the obfuscated command and watching

the corresponding URL, we can perform a chosen-ciphertext attack to crack the obfuscation

scheme. BotProbe again demonstrated its extra utility in automating the informed active

probing and collecting the mapping for our analysis, in addition to detecting the bot. By

interrogating the bot with single byte modifications using BotProbe we were able to reverse

engineer the encoding scheme used by the bot. The actual command after decoding is

" F |" e http://img2.freeimagehosting.net/uploads/03bd27490b.jpg

Here the original obfuscated!Q (" ) is likely to be a command prefix and| is a

separator between commands. We are unsure about the meaningof the translated “F”

command, but suspect that “e” is a download command followed by a URL. Breaking the

encoding/decoding scheme is interesting because it enables us to decode other commands

we observe for different variants of this botnet. In our honeynet, we have observed at least

two other commands issued by the same botnet (with differentbot binaries).9 The changes

in commands reflected relocation of binary hosting websitesand file names. Apparently,

the original hosting site (media.pixpond.com) was no longer available, so the botmas-

ter switched to two other websites (imgplace.com andimg2.freeimagehosting.

net).

9We know that it is the same botnet because the binaries use thesame C&C channel.
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Although we successfully launched a chosen-ciphertext attack to break the encryption

scheme of some botnets with the assistance of BotProbe, there are still some cases where

we could not break the scheme. However, these instances wereall successfully detected as

botnet C&C by BotProbe. In June 2007, we captured a bot in the SRI honeynet, which is la-

beled as Trojan.Dropper.Sramler.C by several AV tools. This bot uses C&C obfuscation and

it makes several DNS requests, which all translated to the same IP address, demonstrating

multiple degrees of stealthiness. The command we observed (shown below)10 is apparently

an update/download command because BotProbe successfullyidentified a third-party ac-

cess response (using Interleaved-Binary-Response-Hypothesis algorithm and probing only

two rounds), i.e., a download fromhttp://220.196.X.107/packed_7711.exe.

=xAgVMf81RvN+xBBhG+xXwttpTsaSBfWeekvMkmkVNcbo20jZvmkCo7CUUbRsdRPzz6wiS1O

Y8pcXg3d9ucVufq2bgQ1mvh+9OBJDwIuw1kOamPaw+2jw/CTaWVQRjrX8Xl2Iph

In September 2007, we captured a new variant of this bot, which is labeled as Back-

door.Win32.IRCBot.aby by several AV tools. We verified thatthis is essentially the same

botnet as the aforementioned botnet, as they both contactedthe same IRC server 220.196.X.226,

The bot observed in June contacted port 3938 while the later bot contacted the server on

port 2234 with the following command:11

=YXCdm8MDxhmOoBo3aSrxyp83pM5yZRnQVt8O+mVxm9bwLd77Ahc6KWKVn/DWu+ACn4mrpT

j6U5+yXie37WfPaymQmLtbkxPUVB2JaMwddAVokDxqsbjxmPlqpjeQIh

It turns out that this is actually an access to220.196.X.107/kk.exe, and Bot-

Probe took only two rounds to flag this as a botnet C&C communication. To conclude,

BotProbe has a 100% detection rate in recognizing IRC-basedbotnet C&Cs, despite the

presence of obfuscated communication.

10At a first glance, this looks like a BASE64 encoded string. However, we verified that this is not the case,
at least not a pure BASE64 scheme.

11The fact that the same IP address remained as the C&C server for over 3 months suggests that obfuscated
botnets might be more resilient to detection.
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6.3.3 User Study on Normal Chat Probing

We report on the results of a user study that simulates the impact of active probing tech-

niques on human chat sessions. This study was conducted at the Georgia Institute of Tech-

nology.

Study design and ethical guidelines:Since we are not allowed todirectlyalter live net-

work flows on campus, we recruited human users to go online andchat with real users at

diverse channels on multiple networks. During the chat sessions, our human users peri-

odically sent crafted messages that simulate the effect of botnet probing. Our goal was

to confirm our hypothesis about human response to tampered messages and evaluate the

degree to which simulated BotProbe techniques affect normal users, e.g., how many ac-

tual rounds would we need on average to detect a normal user? While our current study

is limited to two different chat platforms, IRC andmeebo.com (a website providing in-

stant messaging and chat room capabilities), we believe that our results hold across chat

platforms because they simply capture basic human responses.

Our study protocol was reviewed and approved by the institutional review board (IRB)

of Georgia Tech. To alleviate any privacy concerns, we anonymized usernames and IP ad-

dresses and recorded only the following necessary information: messages exchanged and

timestamps. Furthermore, although we introduced additional network flows, our method-

ology caused no interference to existing IRC network flows.

Participant selection:We logged into different IRC/meebo sites/channels and randomly

selected active chat users who were exchanging chat messages in the channel when we

logged in. We started engaging them in conversations just like normal users. The users we

contacted were not aware of the study or the active probing techniques/algorithms that we

employed. This was necessary to ensure the fairness of our testing procedure.

Study procedure:We designed six different question sets to test on 123 different users.

Our question set includes simple messages like “what’s up,”“nice weather,” “you like

red?”“How may I help you?” “English only! I play nice fun” andTuring test messages

144



such as “what’s 3+6=?” As we conversed with a user on a chatting channel/room using a

random question set, we deliberately introduced probing atcertain predefined points. We

then measured the user’s responses to these tampered messages. The conversations we

recorded could be broken down into two classes.

First, although we randomly chose a user who seemed to be active in the chats room/channel,

there is always a chance that the user does not respond to our overtures. Such cases occurred

26 times (no active replies to our messages). We discount these cases from subsequent anal-

ysis. Second, if the user was willing to pursue a conversation, by responding to our first

question, we followed by sending two or three rounds of repeated questions that interleave

original and slightly tampered messages (by introducing a typo in the first few bytes of

the message). Some examples of tampered messages include “waat’s up,” “noce weather,”

“aou like red?” “Bow may I help you?” “Eaglish only! I play nice fun.” This simulates the

behavior of BotProbe performing P1/P2 probing. We recordedthe exchanged messages for

evaluating Interleaved-Binary-Response-Hypothesis algorithm. In addition to P1/P2 prob-

ing, we subjected the user to P0 probing using Turing-Test-Hypothesis algorithm described

above.

Table 13: User study of performing P1 and P2 probing, using Interleaved-Binary-
Response-Hypothesis algorithm. Most users are detected asnormal in two or three rounds.

meebo chats IRC chats Total
Detected in 2 rounds 63 (75%) 10 (77%) 73 (75.3%)
Detected in 3 rounds 8 (9.5%) 1 (7.7%) 9 (9.3%)
Pending after 3 rounds13 (15.5%) 2 (15.3%) 15 (15.4%)

Total 84 13 97

User study of Interleaved-Binary-Response-Hypothesis:In total, we tested 97 dif-

ferent users, 84 on meebo and 13 on IRC. A simulated BotProbe can detect most of the

normal users (75.3%) in just two rounds and 9.3% in three rounds. The rest (about 15%)

are marked still pending. We provide a summary of our resultswith respective breakdowns

for meebo and IRC in Table 13. We set our probing to be three rounds to limit annoy-

ance/interference to chat users. We further believe that most of the pending sessions can be
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easily declared as normal users by sending additional probes (we selectively verified this

on a few cases). Finally, we did not encounter any false positives (misclassifying a normal

user as a bot) in our limited testing.

User study of Turing-Test-Hypothesis: In addition to P1 and P2 probing, we tested

P0, i.e., injecting Turing test messages (but without user education). We performed tests on

30 different users in meebo. The basic question/puzzle we sent is “what’s 3+6=?” Although

all users provided the correct answer upon repeated interrogation, we found it difficult to

get a direct answer the first time the question is posed. Theseusers tend not to answer

this in a correct way, possibly because they thought it mightbe unnatural to receive such

Turing questions in the chatting channels (they perceive this to be some sort of a joke).

We conclude that if users are not educated to be familiar withsuch Turing tests or have

an unusually strong desire to be in a channel, it is difficult to perform generic Turing tests

on IRC or meebo networks. This also illustrates that although P0 probing seems simple

and effective (if users are educated), there is still a need for alternative and transparent

techniques that require no explicit user education (like our P1-P5 techniques).

6.4 Discussion

6.4.1 Legal Concerns

Legitimate “bots”: It is likely that in some cases there are legal “bots,” e.g., some client-

side legitimate programs or automatic scripts that build their application logic over the

chatting protocols such as IRC. For instance, some chattingbots [42] can also be detected

by BotProbe. A possible solution is to whitelist these legitimate applications if they are very

important and critical, and do not want to be disturbed (we expect such applications to be

very few). However, we think probing a pure chatting bot is not very critical, and arguably,

the detection of such a chatting bot is not considered as a false positive. Furthermore, there

are several heuristics that can help differentiate these chatting bots from real malicious

bots. For example, unlike malicious bots, chatting bots arenot likely to generate activity
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responses (e.g., scan response). In addition, we can consider a group property (similar

to the group analysis in BotSniffer [48]) to differentiate amalicious botnet, where clients

in the same channel are mostly bots, from a normal human chatting channel with mostly

human and very few chatting bots.

Legal implications: Our active probe techniques might be deemed controversial be-

cause they alter network flows to human users, and may replay malicious commands. In

Section 6.2, we have discussed the tradeoff between detection accuracy and disturbance to

human users and various means to mitigate interference withlegitimate chat sessions. We

now consider potential legal implications of replaying a “potentially malicious command

packet.” First, we argue that to minimize liability issues,the only packets that should be

tampered with by BotProbe are packets that are inbound to thelocal network. Second, this

potentially malicious command has already been transmitted into our network and executed

on the local host prior to our probing. Third, if the purpose of the command is information

gathering (e.g.,.sysinfo), then we argue that the first command-response already leaks

enough information, and our further replay most likely doesnot leak more information or

perform more harm. In short, although controversial, we believe that the benefits of actively

probing suspicious sessions could outweigh the potential disturbance.

6.4.2 Limitations and Potential Solutions

As stated in Section 6.1, BotProbe has clear assumptions to limit its application to certain

class of botnets that use chatting-like C&C. Next, we describe some possible evasions,12

though we have not observed real examples yet, and discuss our potential solutions.

Strong encryption: Active probing techniques cannot identify botnet C&C channels

that use strong encryption schemes (e.g., SSH, SSL) making them resilient to replay at-

tacks. Note, however, passive perimeter monitoring strategies cannot detect, too, and most

contemporary IRC bots avoid or use weak encryption schemes.At a minimum, BotProbe

12Most of these evasions are against Single-Binary-Response-Hypothesis and Interleaved-Binary-
Response-Hypothesis algorithms. That is, Turing-Test-Hypothesis algorithm could still work.
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raises the bar and forces all botnets to adopt strongly encrypted communications. This is

also an important area for future work. We envision that combining host-based monitoring

could be helpful.

Timer-based evasions: Knowledgeable adversaries could design bots to have pro-

grammed timers that greatly delay the response time, or limit the number of commands of

the same type that could be issued to the bot in a certain time window. By using such timers,

a bot can potentially evade our Single-Binary-Response-Hypothesis algorithm. Note, how-

ever, that this would also reduce the efficiency of the botnetbecause the botmaster cannot

command the botnet promptly, or to repeat the same task for a certain time. Our potential

solution against such an attack is to randomize the delay in command replays.

Stateful C&C protocols: Our P1 and P2 probing techniques assume a stateless C&C

protocol, i.e., we can replay the observed command several times, and the bot always re-

sponds similarly to the same command. In the future, botmasters may create a stateful

command processor that can detect duplicate commands, e.g., by using a timestamp or se-

quence numbers with every command sent, making simple replay ineffective. Note, most

contemporary IRC botnet command-response protocols are stateless and deterministic. In

addition, our P0 probing can still work even in this evasion.Moreover, to counter this possi-

ble future evasion, we describe a potential solution if there are multiple command-response

rounds and multiple clients in the monitored network. Instead of replaying packets, we

could intercept and modify chatting packets sent to subsequent clients by using P4 and P5

probing techniques. By intentionally modifying the command sent to some clients while

leaving commands to other clients untouched, we could measure the difference in response

between messages, which would be analogous to replaying thecommand to the same client

several times in an Interleaved-Binary-Response-Hypothesis test.13

Finally we remark that future work is definitely needed in this area. While imperfect

and clearly limited, active techniques such as BotProbe cangreatly complement existing

13Here we assume the C&C is one-to-many, i.e., one command to many clients in the network.
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passive detection techniques, at least for a large portion of real-world botnets.

6.5 Summary

In this chapter, we propose the idea of using active probing techniques to detect botnet

C&C communications that use chatting-like protocols. By requiring the observation of

at most oneround of actual C&C interaction and then applying active probing, this ap-

proach, unlike existing passive approaches, can actively collect evidence and shorten the

detection time. We have developed a hypothesis testing framework and a prototype system

implementation that effectively separates deterministicbotnet communication from human

conversations, while providing control over false positives and detection rates. We validate

our system on several malicious IRC bots and conduct an actual user study on approxi-

mately 100 users. Our experimental results, while preliminary, are encouraging. BotProbe

is not intended to replace existing passive detection approaches, but to complement them

from a new perspective.

This work represents the first feasibility study of the use ofactive techniques in botnet

research; thus, we hope to inspire new thought and directions in the research community.

While controversial and clearly limited, BotProbe has demonstrated its effectiveness in

detecting a large portion of contemporary real-world botnets. In future work, we will study

robust, practical, and less controversial extensions of active techniques for a more general

class of botnet C&C detection. In addition to detection, active techniques can be used for

other purposes, e.g., probing the server side, and injecting watermarks to trace the location

of a botmaster. We plan to investigate these new potential utilities of active techniques in

the future.
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CHAPTER VII

LESSONS LEARNED AND A FUTURE BOTNET DETECTION

SYSTEM

We have introduced four Bot* systems: BotHunter, BotSniffer, BotMiner, and BotProbe.

In this chapter, we plan to answer the following questions: How are Bot* systems related

to and different from each other? What lessons have we learned from designing these

systems? How can we design a future botnet detection system that combines multiple

techniques we have used in the Bot* systems?

7.1 Summary of Bot* Systems

Table 14 provides a brief summary of our Bot* systems under the taxonomic study we

proposed in Chapter 2.

Table 14: Summary of our Bot* detection systems.
BotHunter BotSniffer BotMiner BotProbe

Host or network based? network network network network
Signature or behavior based? behavior behavior behavior behavior
Passive or active? passive passive passive active
Detection phase preparation, or operation operation operation operation
Detection target individual group group individual
Require out-of-band information? no no no no
Restriction on botnet C&C technique general centralized structure general chatting-like C&C

Correlation technique vertical (dialog) horizontal horizontal cause-effect
Offline or online correlation? both both offline online

These systems have similar features. A common thread in all these systems is the use of

correlation analysis, i.e., vertical (dialog) correlation in BotHunter, horizontal correlation

in BotSniffer and BotMiner, and cause-effect correlation in BotProbe. In addition, all Bot*

systems are network-based and behavior-based approaches,and they do not require out-of-

band information.

Despite the above similarities, these systems differ in several dimensions. Unlike the
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other three systems, which use a passive monitoring strategy, BotProbe uses an active ap-

proach. BotHunter can detect a successful bot infection in either its preparation phase or

its operation phase, while the other three systems can detect bots in only their operation

phase. BotHunter and BotSniffer detect bots from theirindividual behavior, while Bot-

Sniffer and BotMiner detect botnets from theirgroupbehavior. Regarding restrictions on

botnet C&C techniques, BotSniffer focuses on the effectivedetection of centralized Botnet

C&C channels, and BotProbe focuses on the fast detection of Botnets that use chatting-like

C&C protocols. BotHunter is independent of botnet C&C techniques, though it depends on

the bot infection dialog, and its current C&C sensor is mainly signature-based. BotMiner

is truly independent of botnet C&C techniques among the Bot*systems.

Each of these systems has its own advantages and disadvantages. BotHunter is good

at detecting bots that follow an infection model consistingof several infection stages, and

it can potentially issue alerts in the early phase of the bot infection before bots are fully

controlled to perform further malicious activities. However, it is restricted to the prede-

fined infection model (although this model is relatively general and unlikely to change

dramatically, and we also provide an open and flexible framework for easy extension) and

at some stages such as C&C communication, it currently provides only signature-based

sensors. BotSniffer does not necessarily require the observation of multipledifferentstages

on an individual host, and it does not require botnet-specific signatures. Moreover, it can

detect botnets within a reasonable time (quicker than BotMiner) as long as multiple in-

stances/rounds of botnet communications/activities are observed. However, it is limited to

the detection of botnets mainly using centralized C&C channels. BotMiner overcomes the

weakness of relying on a certain botnet C&C technique by providing a general protocol-

and structure-independent botnet detection scheme. Hence, it can resist the modification

and evolution of botnet C&C techniques. However, its correlation analysis is offline and

slow because current clustering features on C-flows are based on mainly statistical distribu-

tion within a long time window (e.g., several hours), thereby taking a relatively longer time
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for correlation and detection. BotProbe overcomes the weakness of the passive approach,

which usually requires the observation of multiple instances/rounds/stages of botnet com-

munications/activities. It shortens the detection time byrequiring the observation ofat most

one round of actual botnet C&C interaction. Furthermore, unlike BotHunter’s C&C sensor,

it does not use a signature-based approach for recognizing C&C. However, it is limited to

a certain type of C&C that uses chatting-like protocols. Nevertheless, this weakness can

be complemented by the other three systems. As we can see, although these systems have

their advantages and disadvantages, they greatly complement each other by being united,

and provide a relatively comprehensive and multi-perspective correlation-based framework

for botnet detection.

7.2 Lessons Learned

As we have highlighted earlier regarding the challenges in botnet detection, botnet is so far

the most advanced and flexible malware form, evading detection that uses simple symptoms

or single perspective. From the failure of previous detection approaches (as discussed in

Chapter 2) and the success of our designed systems in their desired detection scope, we

have learned the following important lessons.

Evidence-trail collection and dialog-based correlation analysis can be effective for

detecting advanced malware infections that incorporate multiple stages.Malware can

evolve quickly in forms, becoming more and more complex and advanced. However, at

the same time, successful malware infections involve more and more stages. For exam-

ple, compared with previous simple infections, a bot infection typically also involves egg

downloading (to have a rich-functional binary) and C&C communications (to be fully con-

trolled). In addition, in the operation phase, a bot typically participates in multiple tasks.

An evidence-trail- and dialog-based correlation approachsuch as BotHunter can effectively

collect sufficient evidence to detect such kind of advanced malware. This general “dialog

correlation” principle could be applicable to future malware.
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Horizontal correlation analysis can be effective for detecting distributed and coor-

dinated malware infections/attacks.A trend of malware attacks is to become distributed

and coordinated so that the attacks can be more robust and powerful. Horizontal correlation

is an effective way to achieve a big picture of such attacks bycorrelating the similarities

across multiple hosts. Sometimes, it is possible that by using a horizontal view, one can

identify malware infections/attacks that are otherwise hardly noticeable at an individual

host. We believe this general “horizontal correlation” principle could be applicable to de-

tecting future malware that incorporates distributed and coordinated behavior.

Active techniques can greatly complement passive techniques, but they should be

carefully used. As we have shown, compared with passive approaches, an active strategy

has unique advantages such as shortening the detection time. These advantages make it very

effective for detecting a large portion of real-world IRC-based botnets. We believe active

techniques can have broader applicable areas in future malware detection and defense.

However, such active techniques should be carefully designed because of their controversial

nature, and sometimes they should be coupled with user education and awareness.

An effective botnet detection solution should capture someinvariants (rather than

symptoms) of botnets, design detection sensors/techniques across multiple events (or

stages, aspects), and then combine them for a collective/correlative view. Each of

our designed Bot* systems follows this principle, and each system correlates multiple

events/stages/aspects for a final detection decision. Thisprinciple/lesson can be applicable

to situations across the Bot* systems. We know that botnet detection is very difficult and,

at present, nosingletechnique that perfectly detectsall botnets is available. Even our de-

signed Bot* systems are effective only within their owndesired or defined detection scope.

However, we can combine multiple techniques to cover multiple perspectives so as to im-

prove the detection coverage of botnets, similar to the casein which we combine multiple

perspectives in designing each single Bot* system. This thesis provides our experience in

designing different techniques and systems for botnet detection from a certain perspective.
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We have also explained why our Bot* systems are different andcomplementary. In the

next section, we discuss how these techniques may be combined to create a future botnet

detection system.

7.3 Combining Multiple Techniques in a Future Botnet Detection Sys-
tem

As we have discussed before, our Bot* systems complement each other very well. Fig-

ure 31 shows the architecture of an example design of a futurebotnet detection system that

incorporates the complementary techniques we have discussed.

BotMiner
C-Plane Clustering

(on C-flow Features)

Network
Traffic BotMiner

A-Plane Clustering

BotMiner
Cross-Plane
Correlation

ReportsLight-weight
Activity Monitor

Heavy-weight
Activity Monitor BotHunter Analysis

(Dialog Correlation)

BotProbe Analysis
(Active Probing)

BotSniffer Analysis
(Spatial-Temporal

Correlation)

Binary Download

Exploit

Protocol Matcher

Scan

Spam

Light-weight
Flow/C-flow

Monitor

A-Plane Monitoring Correlation Analysis

C-Plane Monitoring

...

...

C&C

Figure 31: Example combination of multiple techniques in a future botnet detection sys-
tem.

The new system is divided into two main parts: monitoring components and correlation

analysis components, similar to the general design principle of the Bot* systems. The

monitoring and correlation components cover both the C-plane (communication plane) and

the A-plane (activity plane). The role of (online) monitoring components is to monitor real-

time network traffic and generate flow/activity logs that capture “who is talking to whom”

(C-plane monitoring) and “who is doing what” (A-plane monitoring). These logs are then

further analyzed by correlation components (either onlineor offline) to identify “who the
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bots are within the same botnet because they share both similar communication patterns

and similar activity patterns (BotMiner analysis), or because they are doing similar and

synchronized activities multiple times (BotSniffer analysis),” and “who a bot is because it

has performed a sequence of activities that follow an infection dialog model (BotHunter

analysis), or because it has a command-response C&C patternwith strong cause-effect

correlation (BotProbe analysis).”

The C-plane monitor is the same component as in BotMiner. It is usually a light-weight

network monitor that simply captures flow-level information for recording “who is talking

to whom,” and our C-flow statistic features will further capture “talking in what kind of

patterns.”

The A-plane monitor, for capturing “who is doing what,” is further divided into heavy-

weight and light-weight components according to whether performing deep packet inspec-

tion or not. The light-weight A-plane monitoring components mainly look at the packet

header information. Scan detection (e.g., SCADE) is a typical example of such a light-

weight activity monitor component because it only needs to track information such as the

number of (failed) connections. Spam detection is another example that looks for the num-

ber of SMTP (port 25) connections and the number of DNS MX queries. In contrast,

heavy-weight A-plane activity monitoring components usually need to inspect the deep

payload to find specific fields or patterns, e.g., to detect PE binary downloading, exploit,

or C&C. They can be based on signature (e.g., rule sets in BotHunter) or anomaly (e.g.,

SLADE). In particular, we include protocol matchers to locate specific interested protocols

such as IRC/HTTP in a port-independent way, and this protocol recognition can be further

used by BotSniffer or BotProbe analysis.

After the monitoring stage, flow logs and activity logs are processed by various corre-

lation engines in parallel. Flow records are converted to C-flow statistical feature records

and further clustered by the BotMiner C-plane clustering component. Similarly, activity

logs are clustered. Then, BotMiner cross-plane correlatorwill examine groups of hosts
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that share both similar communication patterns and similaractivity patterns. The BotMiner

correlation analysis is usually offline mainly because the conversion of C-flow features re-

quires statistical distribution information within a relatively long period, and the clustering

process on numerous C-flow records is also slow.

To complement the slow processing of botMiner, we also perform BotSniffer spatial-

temporal correlation on the activity clustering and use theconnection information provided

by protocol matchers. Thus, if we observe that groups of hosts have multiple rounds of

similar behavior and share a common (IRC/HTTP) server connection, we can reach a con-

clusion of botnets more quickly than BotMiner (because we donot need to wait for the

clustering results of C-plane communication patterns).

The above two correlation analysis components can identifywhich groups of hosts that

are likely bots within a botnet. At the same time, if there is only one bot in the monitored

network, we may miss detection. Therefore, we need BotHunter’s dialog correlation tech-

nique so that even if there is only one bot, we can still declare it by observing its infection

dialog. Although this detection is costly because it typically requires deep packet inspec-

tion, it can detect a bot more quickly than BotMiner and provide a relatively complete

profile on the bot infection dialog.

Furthermore, to overcome the weakness of the longer time monitoring requirement

of BotSniffer (which needs to observe multiple rounds/instances of botnet communica-

tions/activities), BotMiner (which needs to observe a longtime window of botnet commu-

nication), and BotHunter (which needs to observe multiple different infection stages), we

also perform BotProbe analysis. If we identify suspicious chatting-like communications

such as IRC (reported either from an IRC protocol matcher or from a general traffic profile

matcher from flow records, as mentioned in Section 4.4), we can further apply an active

botnet probing technique that detects the existence of botsquickly. Such behavior-based

detection can further contribute to the C&C detection stagefor BotHunter and a more com-

plete profile of the bot infection dialog. In addition, BotProbe is the only technique among
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the Bot* systems that can detect a bot when only one command-response message interac-

tion occurs in a botnet C&C channel without any activity response.

The dashed lines in Figure 31 depictpossibleworkflow. A dashed arrow line connect-

ing two components usually indicates that a certain component can be bootstrapped from

another for efficiency purposes. For example, both C-plane clustering and A-plane clus-

tering can be bootstrapped from each other, as mentioned in Section 5.2.3. Bootstrapping

C-plane clustering from A-plane is particularly useful because it can greatly reduce the

amount of work for clustering by focusing on only a small set of C-flows that involve hosts

that have demonstrated malicious activities in the A-plane.

Here, we illustrate another example of using efficient bootstrap to work in a high-speed

network in which we may not afford to perform deep packet inspection onall traffic. We

can start from light-weight monitoring such as flow capturing and scan/spam detection.

Hosts reported by light-weight activity monitoring components can be fed into heavy-

weight activity monitoring. At the same time, if our C-planeclustering component locates

a group of hosts that has very similar communication patterns, we can further ask heavy-

weight activity monitor components to examine these hosts.

To conclude, although botnet detection is generally difficult, we can develop a rela-

tively comprehensive solution by combining multiple complementary detection techniques

to achieve a multi-perspective view, as shown in this section.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1 Conclusion

Botnets are considered as the largest threat to Internet security today. Millions of comput-

ers are compromised on the Internet, and they can be controlled by botmasters to launch

Internet-wide attacks and fraudulent activities. Thus, weurgently need solutions for the

detection of botnets to further mitigate and defend againstthem.

In this thesis, we have proposed a correlation-based framework for botnet detection in

an enterprise-like network environment. Our framework includes three correlation tech-

niques (vertical/dialog correlation, horizontal correlation, and cause-effect correlation) and

four prototype detection systems (BotHunter, BotSniffer,BotMiner, and BotProbe). We

have discussed the techniques used in each system, summarized the lessons we have learned,

and presented an example architecture for combining these complementary techniques into

a future botnet detection systems.

Our botnet detection solution meets the four design goals proposed in Chapter 1:

First, each Bot* system is guided by a sound correlation analysis principle that captures

some fundamental invariant of botnet behavior. Vertical correlation (used in BotHunter)

captures the dialog nature in the multi-stage bot infectionlife cycle. Horizontal corre-

lation (used in BotSniffer and BotMiner) captures the coordination and similarity nature

within the same botnet. Cause-effect correlation (used in BotProbe) captures the non-

human driven, deterministic command-response pattern of certain class of botnet C&C

channels. We believe the principles of using correlation analysis can also be applicable to

detecting future malware.

Second, our solution provides four complementary techniques and covers multiple
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stages, dimensions, and perspectives. BotHunter usesvertical (dialog) correlationto ex-

amine the behavior of eachdistinct internal host and then recognize a bot infection dialog.

BotSniffer and BotMiner use another complementary strategy, horizontal correlation, to

recognize behavioral similarity and correlationacross multiple hosts. In particular, Bot-

Sniffer focuses on capturing multiple rounds of spatial-temporal correlation behavior to

detectcentralizedbotnet C&C channels, while BotMiner provides a moregeneralframe-

work for protocol- and structure-independent botnet detection. Unlike the abovepassive

monitoring strategy, which usually requires a relatively longer detection time, BotProbe

usesactive botnet probingtechniques in a middlebox to obtain enough confidence of a

cause-effect correlationcaused by the command-response pattern of botnet C&C, and only

requires observingat most oneround of actual C&C interaction. Each system has ad-

vantages and disadvantages, and works well in its desired detection scope. We combine

these different correlation strategies and different detection techniques/systems to provide

a comprehensive and complementary correlation-based framework for multiple-perspective

botnet detection.

Third, our solution is general and extensible. In design, each system is not restricted to

a specific botnetinstance, but instead, it targets a certainclassof botnets. As a represen-

tative example, BotMiner can detect a very general class of botnets using different C&C

techniques. Even BotProbe, although looks like specific to IRC botnets, is applicable to a

general class of botnets that have deterministic, interactive C&Cs (e.g., chatting-like com-

munications such as IRC or instant message). In addition, all these systems are open and

extensible, so adding a new detection sensor to an existing system is quite easy. For exam-

ple, in Section 3.4, we have shown that new detection modulescan easily be incorporated

into the BotHunter system.

Finally, our systems are practical and capable to work in thereal world. Our systems

are evaluated on real-world network traces and/or in live network operations. Experimental

results are promising, showing that our systems can accurately detect real-world botnets
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with a very low false positive rate on real-world normal network traffic. Our work has

already begun to make an impact in the real world. For example, BotHunter is available to

the public athttp://www.cyber-ta.org/BotHunter/, and it has amassed more

than 6,000 downloads in the first five months since its public release.

8.2 Future work

In the future, we plan to study the following directions:

• Improvements on the efficiency and robustness of existing components in the Bot*

systems. We plan to study new techniques to improve the efficiency and increase the

coverage of existing monitoring and correlation components, and such techniques

are intended to be more robust against evasion attempts.

• Botnet detection in high-speed and large-scale networks. We plan to develop a new

generation of real-time detection systems combining vertical and horizontal correla-

tion techniques seamlessly, using a layered design, a flexible sampling strategy, and

a highly scalable distributed scheme, and intending to workin very high-speed (e.g.,

up to 10G bps) and very large (e.g., up to ISP level) network environments.

• More robust and less controversial active techniques with wider applicable areas. As

mentioned before, we plan to investigate the practical utility of active techniques for

more areas in botnet research.

• Cooperative detection combining host- and network-based systems. Host-based ap-

proaches can provide different information/views that network-based approaches can-

not. The combination of these two complementary approachescan potentially pro-

vide better detection results, e.g., possibly for detecting a highly evasive botnet that

uses strongly encrypted C&C. We plan to develop new host-based approaches and

study new cooperative techniques in the future.
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• Botnet mitigation and defense. Once we detect bots/botnets, a logical question that

follows is how we mitigate, respond to, and defend against them. We plan to investi-

gate effective and efficient techniques for achieving this goal in the future.
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